skip to main content


This content will become publicly available on January 1, 2025

Title: Dynamic State Estimation for Inverter-Based Resources: A Control-Physics Dual Estimation Framework
Award ID(s):
2348289
NSF-PAR ID:
10495220
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Power Systems
ISSN:
0885-8950
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We estimate the effect of model deficiencies in the Global Forecast System that lead to systematic forecast errors, as a first step toward correcting them online (i.e., within the model) as in Danforth & Kalnay (2008a, 2008b). Since the analysis increments represent the corrections that new observations make on the 6 h forecast in the analysis cycle, we estimate the model bias corrections from the time average of the analysis increments divided by 6 h, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012–2016, seasonal means of the 6 h model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the submonthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which we attribute to improvements in the specification of the sea surface temperatures. These results provide support for future efforts to make online correction of the mean, seasonal, and diurnal and semidiurnal model biases of Global Forecast System to reduce both systematic and random errors, as suggested by Danforth & Kalnay (2008a, 2008b). It also raises the possibility that analysis increments could be used to provide guidance in testing new physical parameterizations. 
    more » « less
  2. In Internet of Things (IoT) applications requiring parameter estimation, sensors often transmit quantized observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. The fusion center uses the received data to estimate desired parameters. To provide security to such networks, some low complexity encryption approaches have been proposed. In this paper, we generalize those approaches and present an analysis of their estimation and secrecy capabilities. We show that the dimension of the unknown parameter that can be efficiently estimated using an unbiased estimator when using these approaches, is upper bounded. Assuming that an unauthorized eavesdropper is aware of the low complexity encryption process but is unaware of the encryption key, we show successful eavesdropping, even with a large number of observations, is impossible with unbiased estimators and independent observations for these approaches. Numerical results validating our analysis are presented. 
    more » « less
  3. In this paper, we revisit the framework for maximum likelihood estimation (MLE) as applied to parametric models with an aim to estimate the parameter of interest in a gridless manner. The approach has inherent connections to the sparse Bayesian learning (SBL) formulation, and naturally leads to the problem of structured matrix recovery (SMR). We therefore pose the parameter estimation problem as a SMR problem, and recover the parameter of interest by appealing to the Carathéodory-Fejér result on decomposition of positive semi-definite Toeplitz matrices. We propose an iterative algorithm to estimate the structured covariance matrix; each iteration solves a semi-definite program. We numerically compare the performance with other gridless schemes in literature and demonstrate the superior performance of the proposed technique 
    more » « less
  4. null (Ed.)