skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UNCOVER Spectroscopy Confirms the Surprising Ubiquity of Active Galactic Nuclei in Red Sources at z > 5
Abstract The James Webb Space Telescope is revealing a new population of dust-reddened broad-line active galactic nuclei (AGN) at redshiftsz≳ 5. Here we present deep NIRSpec/Prism spectroscopy from the Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) of 15 AGN candidates selected to be compact, with red continua in the rest-frame optical but with blue slopes in the UV. From NIRCam photometry alone, they could have been dominated by dusty star formation or an AGN. Here we show that the majority of the compact red sources in UNCOVER are dust-reddened AGN: 60% show definitive evidence for broad-line Hαwith a FWHM > 2000 km s−1, 20% of the current data are inconclusive, and 20% are brown dwarf stars. We propose an updated photometric criterion to select redz> 5 AGN that excludes brown dwarfs and is expected to yield >80% AGN. Remarkably, among allzphot> 5 galaxies with F277W – F444W > 1 in UNCOVER at least 33% are AGN regardless of compactness, climbing to at least 80% AGN for sources with F277W – F444W > 1.6. The confirmed AGN have black hole masses of 107–109M. While their UV luminosities (−16 >MUV> −20 AB mag) are low compared to UV-selected AGN at these epochs, consistent with percent-level scattered AGN light or low levels of unobscured star formation, the inferred bolometric luminosities are typical of 107–109Mblack holes radiating at ∼10%–40% the Eddington limit. The number densities are surprisingly high at ∼10−5Mpc−3mag−1, 100 times more common than the faintest UV-selected quasars, while accounting for ∼1% of the UV-selected galaxies. While their UV faintness suggests they may not contribute strongly to reionization, their ubiquity poses challenges to models of black hole growth.  more » « less
Award ID(s):
2106453
PAR ID:
10495253
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
964
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 39
Size(s):
Article No. 39
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct-collapse black holes (DCBHs) of mass ∼104 − 105 Mthat form in HI-cooling halos in the early Universe are promising progenitors of the ≳109 Msupermassive black holes that fuel observedz ≳ 7 quasars. Efficient accretion of the surrounding gas onto such DCBH seeds may render them sufficiently bright for detection with the JWST up toz ≈ 20. Additionally, the very steep and red spectral slope predicted across the ≈1 − 5 μm wavelength range of the JWST/NIRSpec instrument during their initial growth phase should make them photometrically identifiable up to very high redshifts. In this work, we present a search for such DCBH candidates across the 34 arcmin2in the first two spokes of the JWST cycle-1 PEARLS survey of the north ecliptic pole time-domain field covering eight NIRCam filters down to a maximum depth of ∼29 AB mag. We identify two objects with spectral energy distributions consistent with theoretical DCBH models. However, we also note that even with data in eight NIRCam filters, objects of this type remain degenerate with dusty galaxies and obscured active galactic nuclei over a wide range of redshifts. Follow-up spectroscopy would be required to pin down the nature of these objects. Based on our sample of DCBH candidates and assumptions on the typical duration of the DCBH steep-slope state, we set a conservative upper limit of ≲5 × 10−4comoving Mpc−3(cMpc−3) on the comoving density of host halos capable of hosting DCBHs with spectral energy distributions similar to the theoretical models atz ≈ 6 − 14. 
    more » « less
  2. Abstract We present the JWST Resolved Stellar Populations Early Release Science (ERS) program. We obtained 27.5 hr of NIRCam and NIRISS imaging of three targets in the Local Group (Milky Way globular cluster M92, ultrafaint dwarf galaxy DracoII, and star-forming dwarf galaxy WLM), which span factors of ∼105in luminosity, ∼104in distance, and ∼105in surface brightness. We describe the survey strategy, scientific and technical goals, implementation details, present select NIRCam color–magnitude diagrams (CMDs), and validate the NIRCam exposure time calculator (ETC). Our CMDs are among the deepest in existence for each class of target. They touch the theoretical hydrogen-burning limit in M92 (<0.08M;MF090W∼ +13.6), include the lowest-mass stars observed outside the Milky Way in Draco II (0.09M;MF090W∼ +12.1), and reach ∼1.5 mag below the oldest main-sequence turnoff in WLM (MF090W∼ +4.6). The PARSEC stellar models provide a good qualitative match to the NIRCam CMDs, though they are ∼0.05 mag too blue compared to M92 F090W − F150W data. Our CMDs show detector-dependent color offsets ranging from ∼0.02 mag in F090W – F150W to ∼0.1 mag in F277W – F444W; these appear to be due to differences in the zero-point calibrations among the detectors. The NIRCam ETC (v2.0) matches the signal-to-noise ratios based on photon noise in uncrowded fields, but the ETC may not be accurate in more crowded fields, similar to what is known for the Hubble Space Telescope. We release the point-source photometry package DOLPHOT, optimized for NIRCam and NIRISS, for the community. 
    more » « less
  3. Abstract Low-luminosity active galactic nuclei (AGNs) with low-mass black holes (BHs) in the early universe are fundamental to understanding the BH growth and their coevolution with the host galaxies. Utilizing JWST NIRCam Wide Field Slitless Spectroscopy, we perform a systematic search for broad-line Hαemitters (BHAEs) atz≈ 4–5 in 25 fields of the A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) project, covering a total area of 275 arcmin2. We identify 16 BHAEs with FWHM of the broad components spanning from ∼1000 to 3000 km s−1. Assuming that the broad line widths arise as a result of Doppler broadening around BHs, the implied BH masses range from 107to 108M, with broad Hα-converted bolometric luminosities of 1044.5–1045.5erg s−1and Eddington ratios of 0.07–0.47. The spatially extended structure of the F200W stacked image may trace the stellar light from the host galaxies. The Hαluminosity function indicates an increasing AGN fraction toward the higher Hαluminosities. We find possible evidence for clustering of BHAEs: two sources are at the same redshift with a projected separation of 519 kpc; one BHAE appears as a composite system residing in an overdense region with three close companion Hαemitters. Three BHAEs exhibit blueshifted absorption troughs indicative of the presence of high column density gas. We find that the broad-line-selected and photometrically selected BHAE samples exhibit different distributions in the optical continuum slopes, which can be attributed to their different selection methods. The ASPIRE broad-line Hαsample provides a good database for future studies of faint AGN populations at high redshift. 
    more » « less
  4. ABSTRACT The JWST has uncovered a new population of candidate broad-line active galactic nucleus (AGN) emerging in the early Universe, named ‘little red dots’ (LRDs) because of their compactness and red colours at optical wavelengths. LRDs appear to be surprisingly abundant ($${\approx} 10^{-5} \, {\rm cMpc}^{-3}$$) given that their inferred bolometric luminosities largely overlap with those of the ultraviolet (UV)-luminous quasars identified at high z in wide-field spectroscopic surveys. In this work, we investigate how the population of LRDs and/or other UV-obscured AGN relates to the one of unobscured, UV-selected quasars. By comparing their number densities, we infer an extremely large and rapidly evolving obscured:unobscured ratio, ranging from $${\approx} 20{:}1$$ at $$z\approx 4$$ to $${\approx} 2300{:}1$$ at $$z\approx 7$$, and possibly extending out to very high ($${\approx} 10^{47}\, {\rm erg}\, {\rm s}^{-1}$$) bolometric luminosities. This large obscured:unobscured ratio is incompatible with the UV-luminous duty cycle measured for unobscured quasars at $$z\approx 4\!-\!6$$, suggesting that LRDs are too abundant to be hosted by the same haloes as unobscured quasars. This implies that either (a) the bolometric luminosities of LRDs are strongly overestimated or (b) LRDs follow different scaling relations than those of UV-selected quasars, representing a new population of accreting supermassive black holes emerging in the early Universe. A direct comparison between the clustering of LRDs and that of faint UV-selected quasars will ultimately confirm these findings and shed light on key properties of LRDs such as their host mass distribution and duty cycle. We provide a mock analysis for the clustering of LRDs and show that it is feasible with current and upcoming JWST surveys. 
    more » « less
  5. Abstract Variability is a fundamental signature for active galactic nuclei (AGN) activity and serves as an unbiased indicator for rapid instability happening near the center of supermassive black holes (SMBHs). Previous studies showed that AGN variability does not have strong redshift evolution, and scales with their bolometric luminosity and BH mass, making it a powerful probe to identify low-mass, low-luminosity AGNs at high redshift. JWST has discovered a new population of high-redshift galaxies likely hosting moderate accreting BHs (>106M)—the little red dots (LRDs;z ∼ 4–10). In this Letter, we study the variability of a sample of 22 LRDs with V-shaped spectral energy distributions in three JWST deep fields that also have reliable Hubble Space Telescope observations in closely paired filters at 1–2μm (rest-frame UV), with the time difference between 6 and 11 yr. This LRD sample covers a redshift range of 3 < z < 8 with −21.3 < MUV < −18.4. Based on both photometry and imaging difference analyses, we find a mean magnitude difference of ∼0.15 ± 0.26 mag, with none of the LRDs showing photometric variability at 3σsignificance. Extrapolation of Sloan Digital Sky Survey quasar variability predicts a magnitude change of order 0.3 mag for our LRD sample. This suggests an upper limit of about ∼30% AGN contribution to the total observed UV light in our sample of LRDs. 
    more » « less