skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Optimal decoding of neural dynamics occurs at mesoscale spatial and temporal resolutions
IntroductionUnderstanding the neural code has been one of the central aims of neuroscience research for decades. Spikes are commonly referred to as the units of information transfer, but multi-unit activity (MUA) recordings are routinely analyzed in aggregate forms such as binned spike counts, peri-stimulus time histograms, firing rates, or population codes. Various forms of averaging also occur in the brain, from the spatial averaging of spikes within dendritic trees to their temporal averaging through synaptic dynamics. However, how these forms of averaging are related to each other or to the spatial and temporal units of information representation within the neural code has remained poorly understood. Materials and methodsIn this work we developed NeuroPixelHD, a symbolic hyperdimensional model of MUA, and used it to decode the spatial location and identity of static images shown ton= 9 mice in the Allen Institute Visual Coding—NeuroPixels dataset from large-scale MUA recordings. We parametrically varied the spatial and temporal resolutions of the MUA data provided to the model, and compared its resulting decoding accuracy. ResultsFor almost all subjects, we found 125ms temporal resolution to maximize decoding accuracy for both the spatial location of Gabor patches (81 classes for patches presented over a 9×9 grid) as well as the identity of natural images (118 classes corresponding to 118 images) across the whole brain. This optimal temporal resolution nevertheless varied greatly between different regions, followed a sensory-associate hierarchy, and was significantly modulated by the central frequency of theta-band oscillations across different regions. Spatially, the optimal resolution was at either of two mesoscale levels for almost all mice: the area level, where the spiking activity of all neurons within each brain area are combined, and the population level, where neuronal spikes within each area are combined across fast spiking (putatively inhibitory) and regular spiking (putatively excitatory) neurons, respectively. We also observed an expected interplay between optimal spatial and temporal resolutions, whereby increasing the amount of averaging across one dimension (space or time) decreases the amount of averaging that is optimal across the other dimension, and vice versa. DiscussionOur findings corroborate existing empirical practices of spatiotemporal binning and averaging in MUA data analysis, and provide a rigorous computational framework for optimizing the level of such aggregations. Our findings can also synthesize these empirical practices with existing knowledge of the various sources of biological averaging in the brain into a new theory of neural information processing in which theunit of informationvaries dynamically based on neuronal signal and noise correlations across space and time.  more » « less
Award ID(s):
2239654
PAR ID:
10495331
Author(s) / Creator(s):
; ; ;
Editor(s):
Jonathan R. Whitlock
Publisher / Repository:
Frontiers Media SA
Date Published:
Journal Name:
Frontiers in Cellular Neuroscience
Volume:
18
ISSN:
1662-5102
Subject(s) / Keyword(s):
neural code, multi-unit activity, averaging, spatial resolution, temporal resolution, hyper-dimensional computing, computational modeling, neural dynamics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Network features found in the brain may help implement more efficient and robust neural networks. Spiking neural networks (SNNs) process spikes in the spatiotemporal domain and can offer better energy efficiency than deep neural networks. However, most SNN implementations rely on simple point neurons that neglect the rich neuronal and dendritic dynamics. Herein, a bio‐inspired columnar learning network (CLN) structure that employs feedforward, lateral, and feedback connections to make robust classification with sparse data is proposed. CLN is inspired by the mammalian neocortex, comprising cortical columns each containing multiple minicolumns formed by interacting pyramidal neurons. A column continuously processes spatiotemporal signals from its sensor, while learning spatial and temporal correlations between features in different regions of an object along with the sensor's movement through sensorimotor interaction. CLN can be implemented using memristor crossbars with a local learning rule, spiking timing‐dependent plasticity (STDP), which can be natively obtained in second‐order memristors. CLN allows inputs from multiple sensors to be simultaneously processed by different columns, resulting in higher classification accuracy and better noise tolerance. Analysis of networks implemented on memristor crossbars shows that the system can operate at very low power and high throughput, with high accuracy and robustness to noise. 
    more » « less
  2. null (Ed.)
    Practice of a complex motor gesture involves motor exploration to attain a better match to target, but little is known about the neural code for such exploration. We examine spiking in a premotor area of the songbird brain critical for song modification and quantify correlations between spiking and time in the motor sequence. While isolated spikes code for time in song during performance of song to a female bird, extended strings of spiking and silence, particularly bursts, code for time in song during undirected (solo) singing, or “practice.” Bursts code for particular times in song with more information than individual spikes, and this spike-spike synergy is significantly higher during undirected singing. The observed pattern information cannot be accounted for by a Poisson model with a matched time-varying rate, indicating that the precise timing of spikes in both bursts in undirected singing and isolated spikes in directed singing code for song with a temporal code. Temporal coding during practice supports the hypothesis that lateral magnocellular nucleus of the anterior nidopallium neurons actively guide song modification at local instances in time. NEW & NOTEWORTHY This paper shows that bursts of spikes in the songbird brain during practice carry information about the output motor pattern. The brain’s code for song changes with social context, in performance versus practice. Synergistic combinations of spiking and silence code for time in the bird’s song. This is one of the first uses of information theory to quantify neural information about a motor output. This activity may guide changes to the song. 
    more » « less
  3. Abstract Brains demonstrate varying spatial scales of nested hierarchical clustering. Identifying the brain’s neuronal cluster size to be presented as nodes in a network computation is critical to both neuroscience and artificial intelligence, as these define the cognitive blocks capable of building intelligent computation. Experiments support various forms and sizes of neural clustering, from handfuls of dendrites to thousands of neurons, and hint at their behavior. Here, we use computational simulations with a brain-derived fMRI network to show that not only do brain networks remain structurally self-similar across scales but also neuron-like signal integration functionality (“integrate and fire”) is preserved at particular clustering scales. As such, we propose a coarse-graining of neuronal networks to ensemble-nodes, with multiple spikes making up its ensemble-spike and time re-scaling factor defining its ensemble-time step. This fractal-like spatiotemporal property, observed in both structure and function, permits strategic choice in bridging across experimental scales for computational modeling while also suggesting regulatory constraints on developmental and evolutionary “growth spurts” in brain size, as per punctuated equilibrium theories in evolutionary biology. 
    more » « less
  4. In this paper, we consider a network of spiking neurons with a deterministic synchronous firing rule at discrete time. We propose three problems – “first consecutive spikes counting”,“total spikes counting” and “k-spikes temporal to spatial encoding” – to model how brains extract temporal information into spatial information from different neural codings. For a max input length T, we design three networks that solve these three problems with matching lower bounds in bothtime O(T) and number of neurons O(logT) in all three questions. 
    more » « less
  5. Sharpee, T (Ed.)
    Topological data analyses are widely used for describing and conceptualizing large volumes of neurobiological data, e.g., for quantifying spiking outputs of large neuronal ensembles and thus understanding the functions of the corresponding networks. Below we discuss an approach in which convergent topological analyses produce insights into how information may be processed in mammalian hippocampus—a brain part that plays a key role in learning and memory. The resulting functional model provides a unifying framework for integrating spiking data at different timescales and following the course of spatial learning at different levels of spatiotemporal granularity. This approach allows accounting for contributions from various physiological phenomena into spatial cognition—the neuronal spiking statistics, the effects of spiking synchronization by different brain waves, the roles played by synaptic efficacies and so forth. In particular, it is possible to demonstrate that networks with plastic and transient synaptic architectures can encode stable cognitive maps, revealing the characteristic timescales of memory processing. 
    more » « less