skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: A Luminous Dust-obscured Tidal Disruption Event Candidate in a Star-forming Galaxy at 42 Mpc
Abstract

While the vast majority of tidal disruption events (TDEs) have been identified by wide-field sky surveys in the optical and X-ray bands, recent studies indicate that a considerable fraction of TDEs may be dust obscured and thus preferentially detected in the infrared (IR) wave bands. In this Letter, we present the discovery of a luminous mid-IR nuclear flare (termed WTP14adbjsh), identified in a systematic transient search of archival images from the NEOWISE mid-IR survey. The source reached a peak luminosity ofL≃ 1043erg s−1at 4.6μm in 2015 before fading in the IR with a TDE-likeFt−5/3decline, radiating a total of more than 3 × 1051erg in the last 7 yr. The transient event took place in the nearby galaxy NGC 7392, at a distance of around 42 Mpc; yet, no optical or X-ray flare is detected. We interpret the transient as the nearest TDE candidate detected in the last decade, which was missed at other wavelengths due to dust obscuration, hinting at the existence of TDEs that have been historically overlooked. Unlike most previously detected TDEs, the transient was discovered in a star-forming galaxy, corroborating earlier suggestions that dust obscuration suppresses significantly the detection of TDEs in these environments. Our results demonstrate that the study of IR-detected TDEs is critical in order to obtain a complete understanding of the physics of TDEs and to conclude whether TDEs occur preferentially in a particular class of galaxies.

 
more » « less
Award ID(s):
1828470
NSF-PAR ID:
10495333
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal Letters
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
948
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The discovery over the last several decades of low- and moderate-luminosity active galactic nuclei (AGNs) in disk-dominated galaxies—which show no “classical” bulges—suggests that secular mechanisms represent an important growth pathway for supermassive black holes in these systems. We present new follow-up NuSTAR observations of the optically elusive AGNs in two bulgeless galaxies, NGC 4178 and J0851+3926. Galaxy NGC 4178 was originally reported as hosting an AGN based on the detection of [Nev] mid-infrared emission detected by Spitzer, and based on Chandra X-ray imaging, it has since been argued to host either a heavily obscured AGN or a supernova remnant. Galaxy J0851+3926 was originally identified as an AGN based on its Wide-Field Infrared Survey Explorer mid-IR colors, and follow-up near-infrared spectroscopy previously revealed a hidden broad-line region, offering compelling evidence for an optically elusive AGN. Neither AGN is detected within the new NuSTAR imaging, and we derive upper limits on the hard X-ray 10–24 keV fluxes of <7.41 × 10−14and <9.40 × 10−14erg cm−2s−1for the AGNs in NGC 4178 and J0851+3926, respectively. If these nondetections are due to large absorbing columns along the line of sight, the nondetections in NGC 4178 and J0851+3926 could be explained with column densities of log(NH/cm2) > 24.2 and 24.1, respectively. The nature of the nuclear activity in NGC 4178 remains inconclusive; it is plausible that the [Nev] traces a period of higher activity in the past, but that the AGN is relatively quiescent now. The nondetection in J0851+3926 and multiwavelength properties are consistent with the AGN being heavily obscured.

     
    more » « less
  2. ABSTRACT

    We report on the SRG/eROSITA detection of ultra-soft ($kT=47^{+5}_{-5}$ eV) X-ray emission (LX =$2.5^{+0.6}_{-0.5} \times 10^{43}$ erg s−1) from the tidal disruption event (TDE) candidate AT 2022dsb ∼14 d before peak optical brightness. As the optical luminosity increases after the eROSITA detection, then the 0.2–2 keV observed flux decays, decreasing by a factor of ∼39 over the 19 d after the initial X-ray detection. Multi-epoch optical spectroscopic follow-up observations reveal transient broad Balmer emission lines and a broad He ii 4686 Å emission complex with respect to the pre-outburst spectrum. Despite the early drop in the observed X-ray flux, the He ii 4686  Å complex is still detected for ∼40 d after the optical peak, suggesting the persistence of an obscured hard ionizing source in the system. Three outflow signatures are also detected at early times: (i) blueshifted H α emission lines in a pre-peak optical spectrum, (ii) transient radio emission, and (iii) blueshifted Ly α absorption lines. The joint evolution of this early-time X-ray emission, the He ii 4686 Å complex, and these outflow signatures suggests that the X-ray emitting disc (formed promptly in this TDE) is still present after optical peak, but may have been enshrouded by optically thick debris, leading to the X-ray faintness in the months after the disruption. If the observed early-time properties in this TDE are not unique to this system, then other TDEs may also be X-ray bright at early times and become X-ray faint upon being veiled by debris launched shortly after the onset of circularization.

     
    more » « less
  3. ABSTRACT AT 2018hyz (= ASASSN-18zj) is a tidal disruption event (TDE) located in the nucleus of a quiescent E+A galaxy at a redshift of z = 0.04573, first detected by the All-Sky Automated Survey for Supernovae (ASAS-SN). We present optical+UV photometry of the transient, as well as an X-ray spectrum and radio upper limits. The bolometric light curve of AT 2018hyz is comparable to other known TDEs and declines at a rate consistent with a t−5/3 at early times, emitting a total radiated energy of E = 9 × 1050 erg. An excess bump appears in the UV light curve about 50 d after bolometric peak, followed by a flattening beyond 250 d. We detect a constant X-ray source present for at least 86 d. The X-ray spectrum shows a total unabsorbed flux of ∼4 × 10−14 erg cm−2 s−1 and is best fit by a blackbody plus power-law model with a photon index of Γ = 0.8. A thermal X-ray model is unable to account for photons >1 keV, while a radio non-detection favours inverse-Compton scattering rather than a jet for the non-thermal component. We model the optical and UV light curves using the Modular Open-Source Fitter for Transients (MOSFiT) and find a best fit for a black hole of 5.2 × 106 M⊙ disrupting a 0.1 M⊙ star; the model suggests the star was likely only partially disrupted, based on the derived impact parameter of β = 0.6. The low optical depth implied by the small debris mass may explain how we are able to see hydrogen emission with disc-like line profiles in the spectra of AT 2018hyz (see our companion paper). 
    more » « less
  4. Abstract

    High-resolution X-ray observations offer a unique tool for probing the still-elusive connection between galaxy mergers and active galactic nuclei (AGNs). We present an analysis of nuclear X-ray emission in an optically selected sample of 92 close galaxy pairs (with projected separations ≲20 kpc and line-of-sight velocity offsets <500 km s−1) at low redshift (z¯0.07), based on archival Chandra observations. The parent sample of galaxy pairs is constructed without imposing an optical classification of nuclear activity, thus it is largely free of selection effect for or against the presence of an AGN. Nor is this sample biased for or against gas-rich mergers. An X-ray source is detected in 70 of the 184 nuclei, giving a detection rate of38%5%+5%, down to a 0.5–8 keV limiting luminosity of ≲1040erg s−1. The detected and undetected nuclei show no systematic difference in their host galaxy properties such as galaxy morphology, stellar mass, and stellar velocity dispersion. When potential contamination from star formation is avoided (i.e.,L2−10 keV> 1041erg s−1), the detection rate becomes18%3%+3%(32/184), which shows no excess compared to the X-ray detection rate of a comparison sample of optically classified single AGNs. The fraction of pairs containing dual AGN is only2%2%+2%. Moreover, most nuclei at the smallest projected separations probed by our sample (a few kiloparsecs) have an unexpectedly low apparent X-ray luminosity and Eddington ratio, which cannot be solely explained by circumnuclear obscuration. These findings suggest that close galaxy interaction is not a sufficient condition for triggering a high level of AGN activity.

     
    more » « less
  5. Abstract

    We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (MBH) with host galaxy scaling relations, showing that the sampleMBHranges from 105.1Mto 108.2M. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frameg-band luminosity function can be well described by a broken power law ofϕ(Lg)Lg/Lbk0.3+Lg/Lbk2.61, withLbk= 1043.1erg s−1. In the BH mass regime of 105.3≲ (MBH/M) ≲ 107.3, the TDE mass function followsϕ(MBH)MBH0.25, which favors a flat local BH mass function (dnBH/dlogMBHconstant). We confirm the significant rate suppression at the high-mass end (MBH≳ 107.5M), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass ofMgal∼ 1010M, the average optical TDE rate is ≈3.2 × 10−5galaxy−1yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5galaxy−1yr−1in galaxies with red, green, and blue colors.

     
    more » « less