skip to main content


Title: Quantifying the unextendibility of entanglement*
Abstract

Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility. In this paper, we present a framework for quantifying and investigating the unextendibility of general bipartite quantum states. First, we define the unextendible entanglement, a family of entanglement measures based on the concept of a state-dependent set of free states. The intuition behind these measures is that the more entangled a bipartite state is, the less entangled each of its individual systems is with a third party. Second, we demonstrate that the unextendible entanglement is an entanglement monotone under two-extendible quantum operations, including local operations and one-way classical communication as a special case. Normalization and faithfulness are two other desirable properties of unextendible entanglement, which we establish here. We further show that the unextendible entanglement provides efficiently computable benchmarks for the rate of exact entanglement or secret key distillation, as well as the overhead of probabilistic entanglement or secret key distillation.

 
more » « less
NSF-PAR ID:
10495452
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
26
Issue:
3
ISSN:
1367-2630
Format(s):
Medium: X Size: Article No. 033013
Size(s):
["Article No. 033013"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We develop a protocol for entanglement generation in the quantum internet that allows a repeater node to usen-qubit Greenberger-Horne-Zeilinger (GHZ) projective measurements that can fusensuccessfully entangledlinks, i.e., two-qubit entangled Bell pairs shared acrossnnetwork edges, incident at that node. Implementingn-fusion, forn ≥ 3, is in principle not much harder than 2-fusions (Bell-basis measurements) in solid-state qubit memories. If we allow even 3-fusions at the nodes, we find—by developing a connection to a modified version of the site-bond percolation problem—that despite lossy (hence probabilistic) link-level entanglement generation, and probabilistic success of the fusion measurements at nodes, one can generate entanglement between end parties Alice and Bob at a rate that stays constant as the distance between them increases. We prove that this powerful network property is not possible to attain with any quantum networking protocol built with Bell measurements and multiplexing alone. We also design a two-party quantum key distribution protocol that converts the entangled states shared between two nodes into a shared secret, at a key generation rate that is independent of the distance between the two parties.

     
    more » « less
  2. Ground-state entanglement governs various properties of quantum many-body systems at low temperatures and is the key to understanding gapped quantum phases of matter. Here we identify a structural property of entanglement in the ground state of gapped local Hamiltonians. This property is captured using a quantum information quantity known as the entanglement spread, which measures the difference between Rényi entanglement entropies. Our main result shows that gapped ground states possess limited entanglement spread across any partition of the system, exhibiting an area-law scaling. Our result applies to systems with interactions described by any graph, but we obtain an improved bound for the special case of lattices. These interaction graphs include cases where entanglement entropy is known not to satisfy an area law. We achieve our results first by connecting the ground-state entanglement to the communication complexity of testing bipartite entangled states and then devising a communication scheme for testing ground states using recently developed quantum algorithms for Hamiltonian simulation. 
    more » « less
  3. Abstract The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems 1,2 . In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation 3–5 . We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state 6,7 . Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits 8 and a toric code state on a torus with sixteen data and eight ancillary qubits 9 . Finally, we use this architecture to realize a hybrid analogue–digital evolution 2 and use it for measuring entanglement entropy in quantum simulations 10–12 , experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars 13,14 . Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology. 
    more » « less
  4. Abstract

    Quantum key distribution (QKD) has established itself as a groundbreaking technology, showcasing inherent security features that are fundamentally proven. Qubit-based QKD protocols that rely on binary encoding encounter an inherent constraint related to the secret key capacity. This limitation restricts the maximum secret key capacity to one bit per photon. On the other hand, qudit-based QKD protocols have their advantages in scenarios where photons are scarce and noise is present, as they enable the transmission of more than one secret bit per photon. While proof-of-principle entangled-based qudit QKD systems have been successfully demonstrated over the years, the current limitation lies in the maximum distribution distance, which remains at 20 km fiber distance. Moreover, in these entangled high-dimensional QKD systems, the witness and distribution of quantum steering have not been shown before. Here we present a high-dimensional time-bin QKD protocol based on energy-time entanglement that generates a secure finite-length key capacity of 2.39 bit/coincidences and secure cryptographic finite-length keys at 0.24 Mbits s−1in a 50 km optical fiber link. Our system is built entirely using readily available commercial off-the-shelf components, and secured by nonlocal dispersion cancellation technique against collective Gaussian attacks. Furthermore, we set new records for witnessing both energy-time entanglement and quantum steering over different fiber distances. When operating with a quantum channel loss of 39 dB, our system retains its inherent characteristic of utilizing large-alphabet. This enables us to achieve a secure key rate of 0.30 kbits s−1and a secure key capacity of 1.10 bit/coincidences, considering finite-key effects. Our experimental results closely match the theoretical upper bound limit of secure cryptographic keys in high-dimensional time-bin QKD protocols (Moweret al2013Phys. Rev.A87062322; Zhanget al2014Phys. Rev. Lett.112120506), and outperform recent state-of-the-art qubit-based QKD protocols in terms of secure key throughput using commercial single-photon detectors (Wengerowskyet al2019Proc. Natl Acad. Sci.1166684; Wengerowskyet al2020npj Quantum Inf.65; Zhanget al2014Phys. Rev. Lett.112120506; Zhanget al2019Nat. Photon.13839; Liuet al2019Phys. Rev. Lett.122160501; Zhanget al2020Phys. Rev. Lett.125010502; Weiet al2020Phys. Rev.X10031030). The simple and robust entanglement-based high-dimensional time-bin protocol presented here provides potential for practical long-distance quantum steering and QKD with multiple secure bits-per-coincidence, and higher secure cryptographic keys compared to mature qubit-based QKD protocols.

     
    more » « less
  5. Quantum cryptography provides absolute security against an all-powerful eavesdropper (Eve). However, in practice Eve's resources may be restricted to a limited aperture size so that she cannot collect all paraxial light without alerting the communicating parties (Alice and Bob). In this paper we study a quantum wiretap channel in which the connection from Alice to Eve is lossy, so that some of the transmitted quantum information is inaccessible to both Bob and Eve. For a pureloss channel under such restricted eavesdropping, we show that the key rates achievable with a two-mode squeezed vacuum state, heterodyne detection, and public classical communication assistance-given by the Hashing inequality-can exceed the secret key distillation capacity of the channel against an omnipotent eavesdropper. We report upper bounds on the key rates under the restricted eavesdropping model based on the relative entropy of entanglement, which closely match the achievable rates. For the pure-loss channel under restricted eavesdropping, we compare the secret-key rates of continuous-variable (CV) quantum key distribution (QKD) based on Gaussian-modulated coherent states and heterodyne detection with the discrete variable (DV) decoystate BB84 QKD protocol based on polarization qubits encoded in weak coherent laser pulses. 
    more » « less