Abstract MotivationAs fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt. ResultsWe introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with limited annotations by facilitating annotation transfer between GO terms. Availability and implementationhttps://github.com/BioinfoMachineLearning/TransFew.
more »
« less
GO2Sum: generating human-readable functional summary of proteins from GO terms
Abstract Understanding the biological functions of proteins is of fundamental importance in modern biology. To represent a function of proteins, Gene Ontology (GO), a controlled vocabulary, is frequently used, because it is easy to handle by computer programs avoiding open-ended text interpretation. Particularly, the majority of current protein function prediction methods rely on GO terms. However, the extensive list of GO terms that describe a protein function can pose challenges for biologists when it comes to interpretation. In response to this issue, we developed GO2Sum (Gene Ontology terms Summarizer), a model that takes a set of GO terms as input and generates a human-readable summary using the T5 large language model. GO2Sum was developed by fine-tuning T5 on GO term assignments and free-text function descriptions for UniProt entries, enabling it to recreate function descriptions by concatenating GO term descriptions. Our results demonstrated that GO2Sum significantly outperforms the original T5 model that was trained on the entire web corpus in generating Function, Subunit Structure, and Pathway paragraphs for UniProt entries.
more »
« less
- Award ID(s):
- 2003635
- PAR ID:
- 10495599
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Systems Biology and Applications
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2056-7189
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gene Ontology (GO) has been widely used to annotate functions of genes and gene products. Here, we proposed a new method, TripletGO, to deduce GO terms of protein-coding and non-coding genes, through the integration of four complementary pipelines built on transcript expression profile, genetic sequence alignment, protein sequence alignment, and naïve probability. TripletGO was tested on a large set of 5754 genes from 8 species (human, mouse, Arabidopsis, rat, fly, budding yeast, fission yeast, and nematoda) and 2433 proteins with available expression data from the third Critical Assessment of Protein Function Annotation challenge (CAFA3). Experimental results show that TripletGO achieves function annotation accuracy significantly beyond the current state-of-the-art approaches. Detailed analyses show that the major advantage of TripletGO lies in the coupling of a new triplet network-based profiling method with the feature space mapping technique, which can accurately recognize function patterns from transcript expression profiles. Meanwhile, the combination of multiple complementary models, especially those from transcript expression and protein-level alignments, improves the coverage and accuracy of the final GO annotation results. The standalone package and an online server of TripletGO are freely available at https://zhanggroup.org/TripletGO/.more » « less
-
Abstract Domains are functional and structural units of proteins that govern various biological functions performed by the proteins. Therefore, the characterization of domains in a protein can serve as a proper functional representation of proteins. Here, we employ a self-supervised protocol to derive functionally consistent representations for domains by learning domain-Gene Ontology (GO) co-occurrences and associations. The domain embeddings we constructed turned out to be effective in performing actual function prediction tasks. Extensive evaluations showed that protein representations using the domain embeddings are superior to those of large-scale protein language models in GO prediction tasks. Moreover, the new function prediction method built on the domain embeddings, named Domain-PFP, substantially outperformed the state-of-the-art function predictors. Additionally, Domain-PFP demonstrated competitive performance in the CAFA3 evaluation, achieving overall the best performance among the top teams that participated in the assessment.more » « less
-
Abstract Motivation Many protein function databases are built on automated or semi-automated curations and can contain various annotation errors. The correction of such misannotations is critical to improving the accuracy and reliability of the databases. Results We proposed a new approach to detect potentially incorrect Gene Ontology (GO) annotations by comparing the ratio of annotation rates (RAR) for the same GO term across different taxonomic groups, where those with a relatively low RAR usually correspond to incorrect annotations. As an illustration, we applied the approach to 20 commonly-studied species in two recent UniProt-GOA releases and identified 250 potential misannotations in the 2018-11-6 release, where only 25% of them were corrected in the 2019-6-3 release. Importantly, 56% of the misannotations are “Inferred from Biological aspect of Ancestor (IBA)” which is in contradiction with previous observations that attributed misannotations mainly to “Inferred from Sequence or structural Similarity (ISS)”, probably reflecting an error source shift due to the new developments of function annotation databases. The results demonstrated a simple but efficient misannotation detection approach that is useful for large-scale comparative protein function studies. Availability https://zhanglab.ccmb.med.umich.edu/RAR Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Kellogg, Doug (Ed.)The elucidation of a protein’s interaction/association network is important for defining its biological function. Mass spectrometry–based proteomic approaches have emerged as powerful tools for identifying protein–protein interactions (PPIs) and protein–protein associations (PPAs). However, interactome/association experiments are difficult to interpret, considering the complexity and abundance of data that are generated. Although tools have been developed to identify protein interactions/associations quantitatively, there is still a pressing need for easy-to-use tools that allow users to contextualize their results. To address this, we developed CANVS, a computational pipeline that cleans, analyzes, and visualizes mass spectrometry–based interactome/association data. CANVS is wrapped as an interactive Shiny dashboard with simple requirements, allowing users to interface easily with the pipeline, analyze complex experimental data, and create PPI/A networks. The application integrates systems biology databases such as BioGRID and CORUM to contextualize the results. Furthermore, CANVS features a Gene Ontology tool that allows users to identify relevant GO terms in their results and create visual networks with proteins associated with relevant GO terms. Overall, CANVS is an easy-to-use application that benefits all researchers, especially those who lack an established bioinformatic pipeline and are interested in studying interactome/association data.more » « less
An official website of the United States government
