skip to main content


Title: Systematic Radio Telescope Alignment Using Portable Fringe Projection Profilometry
Abstract

In 2019, the Event Horizon Telescope (EHT) released the first-ever image of a black hole event horizon. Astronomers are now aiming for higher angular resolutions of distant targets, like black holes, to understand more about the fundamental laws of gravity that govern our universe. To achieve this higher resolution and increased sensitivity, larger radio telescopes are needed to operate at higher frequencies and in larger quantities. Projects like the next-generation Very Large Array (ngVLA) and the Square-Kilometer Array (SKA) require building hundreds of telescopes with diameters greater than 10 ms over the next decade. This has a twofold effect. Radio telescope surfaces need to be more accurate to operate at higher frequencies, and the logistics involved in maintaining a radio telescope need to be simplified to support them properly in large quantities. Both of these problems can be solved with improved methods for surface metrology that are faster and more accurate with a higher resolution. This leads to faster and more accurate panel alignment and, therefore, a more productive observatory. In this paper, we present the use of binocular fringe projection profilometry as a solution to this problem and demonstrate it by aligning two panels on a 3-m radio telescope dish. The measurement takes only 10 min and directly delivers feedback on the tip, tilt, and piston of each panel to create the ideal reflector shape.

 
more » « less
NSF-PAR ID:
10495623
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Nanomanufacturing and Metrology
Volume:
7
Issue:
1
ISSN:
2520-811X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The proposed next generation Event Horizon Telescope (ngEHT) concept envisions the imaging of various astronomical sources on scales of microarcseconds in unprecedented detail with at least two orders of magnitude improvement in the image dynamic ranges by extending the Event Horizon Telescope (EHT). A key technical component of ngEHT is the utilization of large aperture telescopes to anchor the entire array, allowing the connection of less sensitive stations through highly sensitive fringe detections to form a dense network across the planet. Here, we introduce two projects for planned next generation large radio telescopes in the 2030s on the Chajnantor Plateau in the Atacama desert in northern Chile, the Large Submillimeter Telescope (LST) and the Atacama Large Aperture Submillimeter Telescope (AtLAST). Both are designed to have a 50-meter diameter and operate at the planned ngEHT frequency bands of 86, 230 and 345 GHz. A large aperture of 50 m that is co-located with two existing EHT stations, the Atacama Large Millimeter/Submillimeter Array (ALMA) and the Atacama Pathfinder Experiment (APEX) Telescope in the excellent observing site of the Chajnantor Plateau, will offer excellent capabilities for highly sensitive, multi-frequency, and time-agile millimeter very long baseline interferometry (VLBI) observations with accurate data calibration relevant to key science cases of ngEHT. In addition to ngEHT, its unique location in Chile will substantially improve angular resolutions of the planned Next Generation Very Large Array in North America or any future global millimeter VLBI arrays if combined. LST and AtLAST will be a key element enabling transformative science cases with next-generation millimeter/submillimeter VLBI arrays. 
    more » « less
  2. Abstract

    The Event Horizon Telescope (EHT) has produced images of the plasma flow around the supermassive black holes in Sgr A* and M87* with a resolution comparable to the projected size of their event horizons. Observations with the next-generation Event Horizon Telescope (ngEHT) will have significantly improved Fourier plane coverage and will be conducted at multiple frequency bands (86, 230, and 345 GHz), each with a wide bandwidth. At these frequencies, both Sgr A* and M87* transition from optically thin to optically thick. Resolved spectral index maps in the near-horizon and jet-launching regions of these supermassive black hole sources can constrain properties of the emitting plasma that are degenerate in single-frequency images. In addition, combining information from data obtained at multiple frequencies is a powerful tool for interferometric image reconstruction, since gaps in spatial scales in single-frequency observations can be filled in with information from other frequencies. Here we present a new method of simultaneously reconstructing interferometric images at multiple frequencies along with their spectral index maps. The method is based on existing regularized maximum likelihood (RML) methods commonly used for EHT imaging and is implemented in theeht-imagingPython software library. We show results of this method on simulated ngEHT data sets as well as on real data from the Very Long Baseline Array and Atacama Large Millimeter/submillimeter Array. These examples demonstrate that simultaneous RML multifrequency image reconstruction produces higher-quality and more scientifically useful results than is possible from combining independent image reconstructions at each frequency.

     
    more » « less
  3. In April 2019, the Event Horizon Telescope (EHT) collaboration revealed the first image of the candidate super- massive black hole (SMBH) at the centre of the giant elliptical galaxy Messier 87 (M87). This event-horizon-scale image shows a ring of glowing plasma with a dark patch at the centre, which is interpreted as the shadow of the black hole. This breakthrough result, which represents a powerful confirmation of Einstein’s theory of gravity, or general relativity, was made possible by assembling a global network of radio telescopes operating at millimetre wavelengths that for the first time included the Atacama Large Millimeter/submillimeter Array (ALMA). The addition of ALMA as an anchor station has enabled a giant leap forward by increasing the sensitivity limits of the EHT by an order of magnitude, effectively turning it into an imaging array. The published image demonstrates that it is now possible to directly study the event horizon shadows of SMBHs via electromagnetic radiation, thereby transforming this elusive frontier from a mathematical concept into an astrophysical reality. The expansion of the array over the next few years will include new stations on different continents — and eventually satellites in space. This will provide progressively sharper and higher-fidelity images of SMBH candidates, and potentially even movies of the hot plasma orbiting around SMBHs. These improvements will shed light on the processes of black hole accretion and jet formation on event-horizon scales, thereby enabling more precise tests of general relativity in the truly strong field regime. 
    more » « less
  4. Abstract

    Objects orbiting in the presence of a rotating massive body experience a gravitomagnetic frame-dragging effect, known as the Lense-Thirring effect, that has been experimentally confirmed in the weak-field limit. In the strong-field limit, near the horizon of a rotating black hole, frame dragging becomes so extreme that all objects must co-rotate with the black hole’s angular momentum. In this work, we perform general relativistic numerical simulations to identify observable signatures of frame dragging in the strong-field limit that appear when infalling gas is forced to flip its direction of rotation as it is being accreted. In total intensity images, infalling streams exhibit “S”-shaped features due to the switch in the tangential velocity. In linear polarization, a flip in the handedness of spatially resolved polarization ticks as a function of radius encodes a transition in the magnetic field geometry that occurs due to magnetic flux freezing in the dragged plasma. Using a network of telescopes around the world, the Event Horizon Telescope collaboration has demonstrated that it is now possible to directly image black holes on event horizon scales. We show that the phenomena described in this work would be accessible to the next-generation Event Horizon Telescope and extensions of the array into space, which would produce spatially resolved images on event horizon scales with higher spatial resolution and dynamic range.

     
    more » « less
  5. Abstract

    We present estimates for the number of shadow-resolved supermassive black hole (SMBH) systems that can be detected using radio interferometers, as a function of angular resolution, flux density sensitivity, and observing frequency. Accounting for the distribution of SMBHs across mass, redshift, and accretion rate, we use a new semianalytic spectral energy distribution model to derive the number of SMBHs with detectable and optically thin horizon-scale emission. We demonstrate that (sub)millimeter interferometric observations with ∼0.1μas resolution and ∼1μJy sensitivity could access >106SMBH shadows. We then further decompose the shadow source counts into the number of black holes for which we could expect to observe the first- and second-order lensed photon rings. Accessing the bulk population of first-order photon rings requires ≲2μas resolution and ≲0.5 mJy sensitivity, whereas doing the same for second-order photon rings requires ≲0.1μas resolution and ≲5μJy sensitivity. Our model predicts that with modest improvements to sensitivity, as many as ∼5 additional horizon-resolved sources should become accessible to the current Event Horizon Telescope (EHT), whereas a next-generation EHT observing at 345 GHz should have access to ∼3 times as many sources. More generally, our results can help guide enhancements of current arrays and specifications for future interferometric experiments that aim to spatially resolve a large population of SMBH shadows or higher-order photon rings.

     
    more » « less