Abstract AimPhysiological tolerances and biotic interactions along habitat gradients are thought to influence species occurrence. Distributional differences caused by such forces are particularly noticeable on tropical mountains, where high species turnover along elevational gradients occurs over relatively short distances and elevational distributions of particular species can shift among mountains. Such shifts are interpreted as evidence of the importance of spatial variation in interspecific competition and habitat or climatic gradients. To assess the relative importance of competition and compression of habitat and climatic zones in setting range limits, we examined differences in elevational ranges of forest bird species among four Bornean mountains with distinct features. LocationBornean mountains Kinabalu, Mulu, Pueh and Topap Oso. TaxonRain forest bird communities along elevational gradients. MethodsWe surveyed the elevational ranges of rain forest birds on four mountains in Borneo to test which environmental variables—habitat zone compression or presence of likely competitors—best predicted differences in elevational ranges of species among mountains. For this purpose, we used two complementary tests: a comparison of elevational range limits between pairs of mountains, and linear mixed models with naïve occupancy as the response variable. ResultsWe found that lowland species occur higher in elevation on two small mountains compared to Mt. Mulu. This result is inconsistent with the expectation that distributions of habitats are elevationally compressed on small mountains, but is consistent with the hypothesis that a reduction in competition (likely diffuse) on short mountains, which largely lack montane specialist species, allows lowland species to occur higher in elevation. The relative influence of competition changes with elevation, and the correlation between lower range limits of montane species and the distribution of their competitors was weaker than in lowland species. Main conclusionsThese findings provide support for the importance of biotic interactions in setting elevational range limits of tropical bird species, although abiotic gradients explain the majority of distribution patterns. Thus, models predicting range shifts under climate change scenarios must include not only climatic variables, as is currently most common, but also information on potentially resulting changes in species interactions, especially for lowland species.
more »
« less
Patterns in the genetic structure of 49 lowland rain forest tree species co‐distributed on opposite sides of the northern Andes
Abstract The Andes are a major dispersal barrier for lowland rain forest plants and animals, yet hundreds of lowland tree species are distributed on both sides of the northern Andes, raising questions about how the Andes influenced their biogeographic histories and population genetic structure. To explore these questions, we generated standardized datasets of thousands of SNPs from paired populations of 49 tree species co‐distributed in rain forest tree communities located in Panama and Amazonian Ecuador and calculated genetic diversity (π) and absolute genetic divergence (dXY) within and between populations, respectively. We predicted (1) higher genetic diversity in the ancestral source region (east or west of the Andes) for each taxon and (2) correlation of genetic statistics with species attributes, including elevational range and life‐history strategy. We found that genetic diversity was higher in putative ancestral source regions, possibly reflecting founder events during colonization. We found little support for a relationship between genetic divergence and species attributes except that species with higher elevational range limits exhibited higherdXY, implying older divergence times. One possible explanation for this pattern is that dispersal through mountain passes declined in importance relative to dispersal via alternative lowland routes as the Andes experienced uplift. We found no difference in mean genetic diversity between populations in Central America and the Amazon. Overall, our results suggest that dispersal across the Andes has left enduring signatures in the genetic structure of widespread rain forest trees. We outline additional hypotheses to be tested with species‐specific case studies.
more »
« less
- Award ID(s):
- 2020424
- PAR ID:
- 10495715
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Biotropica
- Volume:
- 56
- Issue:
- 2
- ISSN:
- 0006-3606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Identifying drivers of dispersal limitation and genetic differentiation is a key goal in biogeography. We examine patterns of population connectivity and genetic diversity using restriction site‐associatedDNAsequencing (RADseq) in two bumble bee species,Bombus vosnesenskiiandBombus bifarius,across latitude and altitude in mountain ranges from California, Oregon and Washington, U.S.A.Bombus vosnesenskii, which occurs across a broader elevational range at most latitudes, exhibits little population structure whileB. bifarius, which occupies a relatively narrow higher elevation niche across most latitudes, exhibits much stronger population differentiation, although gene flow in both species is best explained by isolation with environmental niche resistance. A relationship between elevational habitat breadth and genetic diversity is also apparent, withB. vosnesenskiiexhibiting relatively consistent levels of genetic diversity across its range, whileB. bifariushas reduced genetic diversity at low latitudes, where it is restricted to high‐elevation habitat. The results of this study highlight the importance of the intersect between elevational range and habitat suitability in influencing population connectivity and suggest that future climate warming will have a fragmenting effect even on populations that are presently well connected, as they track their thermal niches upward in montane systems.more » « less
-
Barton, Nick H. (Ed.)In the formation of species, adaptation by natural selection generates distinct combinations of traits that function well together. The maintenance of adaptive trait combinations in the face of gene flow depends on the strength and nature of selection acting on the underlying genetic loci. Floral pollination syndromes exemplify the evolution of trait combinations adaptive for particular pollinators. The North American wildflower genusPenstemondisplays remarkable floral syndrome convergence, with at least 20 separate lineages that have evolved from ancestral bee pollination syndrome (wide blue-purple flowers that present a landing platform for bees and small amounts of nectar) to hummingbird pollination syndrome (bright red narrowly tubular flowers offering copious nectar). Related taxa that differ in floral syndrome offer an attractive opportunity to examine the genomic basis of complex trait divergence. In this study, we characterized genomic divergence among 229 individuals from aPenstemonspecies complex that includes both bee and hummingbird floral syndromes. Field plants are easily classified into species based on phenotypic differences and hybrids displaying intermediate floral syndromes are rare. Despite unambiguous phenotypic differences, genome-wide differentiation between species is minimal. Hummingbird-adapted populations are more genetically similar to nearby bee-adapted populations than to geographically distant hummingbird-adapted populations, in terms of genome-widedXY. However, a small number of genetic loci are strongly differentiated between species. These approximately 20 “species-diagnostic loci,” which appear to have nearly fixed differences between pollination syndromes, are sprinkled throughout the genome in high recombination regions. Several map closely to previously established floral trait quantitative trait loci (QTLs). The striking difference between the diagnostic loci and the genome as whole suggests strong selection to maintain distinct combinations of traits, but with sufficient gene flow to homogenize the genomic background. A surprisingly small number of alleles confer phenotypic differences that form the basis of species identity in this species complex.more » « less
-
Theoretically, species' characteristics should allow estimation of dispersal potential and, in turn, explain levels of population genetic differentiation. However, a mismatch between traits and genetic patterns is often reported for marine species, and interpreted as evidence that life-history traits do not influence dispersal. Here, we couple ecological and genomic methods to test the hypothesis that species with attributes favouring greater dispersal potential—e.g., longer pelagic duration, higher fecundity and larger population size—have greater realized dispersal overall. We used a natural experiment created by a large-scale and multispecies mortality event which created a “clean slate” on which to study recruitment dynamics, thus simplifying a usually complex problem. We surveyed four species of differing dispersal potential to quantify the abundance and distribution of recruits and to genetically assign these recruits to probable parental sources. Species with higher dispersal potential recolonized a broader extent of the impacted range, did so more quickly and recovered more genetic diversity than species with lower dispersal potential. Moreover, populations of taxa with higher dispersal potential exhibited more immigration (71%–92% of recruits) than taxa with lower dispersal potential (17%–44% of recruits). By linking ecological with genomic perspectives, we demonstrate that a suite of interacting life-history and demographic attributes do influence species' realized dispersal and genetic neighbourhoods. To better understand species' resilience and recovery in this time of global change, integrative eco-evolutionary approaches are needed to more rigorously evaluate the effect of dispersal-linked attributes on realized dispersal and population genetic differentiation.more » « less
-
Abstract South American dry forests have a complex and poorly understood biogeographic history. Based on the fragmented distribution of many Neotropical dry forest species, it has been suggested that this biome was more widely distributed and contiguous under drier climate conditions in the Pleistocene. To test this scenario, known as the Pleistocene Arc Hypothesis, we studied the phylogeography of the Rufous‐fronted Thornbird (Phacellodomus rufifrons), a widespread dry forest bird with a disjunct distribution closely matching that of the biome itself. We sequenced mtDNA and used ddRADseq to sample 7,167 genome‐wide single‐nucleotide polymorphisms from 74P. rufifronsindividuals across its range. We found low genetic differentiation over two prominent geographic breaks — particularly across a 1,000 km gap between populations in Bolivia and Northern Peru. Using demographic analyses of the joint site frequency spectrum, we found evidence of recent divergence without subsequent gene flow across those breaks. By contrast, parapatric morphologically distinct populations in northeastern Brazil show high genetic divergence with evidence of recent gene flow. These results, in combination with our paleoclimate species distribution modelling, support the idea that currently disjunct patches of dry forest were more connected in the recent past, probably during the Middle and Late Pleistocene. This notion fits the major predictions of the Pleistocene Arc Hypothesis and illustrates the importance of comprehensive genomic and geographic sampling for examining biogeographic and evolutionary questions in complex ecosystems like Neotropical dry forests.more » « less
An official website of the United States government
