skip to main content


Title: Hydrodynamically‐Driven Deposition of Mud in River Systems
Abstract

The riverine transport and deposition of mud is the primary agent of landscape construction and evolution in many fluvial and coastal environments. Previous efforts exploring this process have raised uncertainty regarding the effects of hydrodynamic and chemical controls on the transport and deposition of mud, and thus the constructions of muddy coastal and upstream environments. As such, direct measurements are necessary to constrain the deposition of mud by river systems. Here, we combine laboratory evidence and a field investigation in the Mississippi River delta to explore the controls on the riverine transport and deposition of mud. We show that the flocculation of mud, with floc diameters greater than 10 μm, in freshwater is a ubiquitous phenomenon, causing the sedimentation of mud to be driven by changes in local hydrodynamics, and thus providing an explanation for how river systems construct landscapes through the deposition of mud in both coastal and upstream environments.

 
more » « less
NSF-PAR ID:
10495720
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
4
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tidal freshwater zones (TFZs) are transitional environments between terrestrial and coastal waters. TFZs have freshwater chemistry and tidal physics, and yet are neither river nor estuary based on classic definitions. Such zones have been occasionally discussed in the literature but lack a consistent nomenclature and framework for study. This work proposes a measurable definition for TFZs based on three longitudinal points of interest: (1) the upstream limit of brackish water, (2) the upstream limit of bidirectional tidal velocities, and (3) the upstream limit of tidal stage fluctuations. The resulting size and position of a TFZ is transient and depends on the balance of tidal and riverine forces that evolves over event, tidal, seasonal, and annual (or longer) timescales. The concept, definition, and transient analysis of TFZ position are illustrated using field observations from the Aransas River (Texas, USA) from July 2015 to July 2016. The median Aransas TFZ length was 59.9 km, with a late summer maximum of 66.0 km and a winter minimum of 53.6 km. The TFZ typically (annual median) began 11.8 km upstream from the river mouth (15.4 km winter/11.2 km summer medians) and ended 71.7 km upstream (69.0 km/77.2 km). Seasonally low baseflow in the Aransas River promoted gradual coastal salt encroachment upstream, which shortened the TFZ. However, sporadic large rainfall/runoff events rapidly elongated the TFZ. The TFZ definition establishes a quantifiable framework for analyzing these critical freshwater systems that reside at the nexus of natural and human‐influenced hydrology, tides, and climate.

     
    more » « less
  2. Abstract

    Impacts of urban development on aquatic populations are often complex and difficult to ascertain, but population genetic analysis has allowed researchers to monitor and estimate gene flow in the context of existing and future hydroelectric projects. The Lower Mekong Basin is undergoing rapid hydroelectric development with around 50 completed and under‐construction dams and 95 planned dams. The authors investigated the baseline genetic diversity of two exploited migratory fishes, the mud carpHenicorhynchus lobatus(five locations), and the rat‐faced pangasiid catfish,Helicophagus leptorhynchus(two locations), in the Lower Mekong Basin using the genomic double digest restriction site‐associated DNA (ddRAD) sequencing method. In both species, fish sampled upstream of Khone Falls were differentiated from those collected at other sites, andNeestimates at the site above the falls were lower than those at other sites. This was the first study to utilize thousands of RAD‐generated single nucleotide polymorphisms to indicate that the Mekong's Khone Falls are a potential barrier to gene flow for these two moderately migratory species. The recent completion of the Don Sahong dam across one of the only channels for migratory fishes through Khone Falls may further exacerbate signatures of isolation and continue to disrupt the migration patterns of regionally vital food fishes. In addition,H. lobatuspopulations downstream of Khone Falls, including the 3S Basin and Tonle Sap system, displayed robust connectivity. Potential obstruction of migration pathways between these river systems resulting from future dam construction may limit dispersal, which has led to elevated inbreeding rates and even local extirpation in other fragmented riverine species.

     
    more » « less
  3. Abstract

    River networks transport dissolved organic carbon (DOC) from terrestrial uplands to the coastal ocean. The extent to which a reach or lake within a river network uptakes DOC depends on the stream order, the seasonal conditions, and the flow. At the watershed scale, it remains unclear whether DOC uptake is dominated by biological processes such as respiration, or abiotic processes like photomineralization. The partitioning of DOC uptake in lakes vs. rivers is also unclear. In this study, we present a new model that unifies year‐round controls on DOC cycling for an entire river network, including river–lake connectivity, to elucidate the importance of biotic vs. abiotic controls on DOC uptake. We present the Catchment UPtake and Sinks by Season, Order, and Flow for DOC (CUPS‐OF‐DOC) model, which quantifies terrestrial DOC loading, gross primary productivity, and uptake via microbes and photomineralization. The model is applied to the Connecticut River Watershed, and accounts for cascading reach‐ and lake‐scale DOC cycling across 98 scenarios spanning combinations of flows, seasons, and stream orders. We show that riverine DOC uptake is nearly constant with stream order, but the proportion of DOC uptake from photomineralization varies. Photomineralization dominates in rivers in most flow conditions and stream orders, especially in winter, accounting for at least half of whole‐watershed DOC uptake in February across all flows. Whole‐watershed summer DOC uptake occurs mostly via biomineralization in lakes, accounting for 80% of DOC uptake during the growing season, despite accounting for less than 6% of watershed open water surface area.

     
    more » « less
  4. Quantitative interrogation of grain sizes in sedimentary systems has the potential to improve predictions of stratigraphic architecture, facies distributions, and downstream reservoir characteristics. To quantify these relationships, downstream fining data are coupled with rates of mass extraction, with input grain‐size distribution, accommodation, and sediment input from multiple transport pathways providing primary controls on resulting sediment dispersal patterns. We spatially apportioned mass distribution along three sediment delivery pathways with distinct accommodation characteristics within the Ganges‐Brahmaputra‐Meghna Delta to calculate chi (χ), the total fraction of supplied sediment flux lost to deposition at any given point. Low rates of downstream fining and sand‐rich channel facies characterize a bypass‐dominant pathway along the western margin of Sylhet basin, whereas two splay deposits that prograde into the underfilled basin interior exhibit higher rates of fining and preservation of mud‐rich facies. Both splay deposits show a shift from sand‐dominated to mixed sand and mud facies and increased mud preservation (above 30%) at aχvalue of ∼0.8. No comparable increase in mud preservation occurs along the bypass‐dominated pathway, suggesting that this course operated in an inherently different extraction mode due to limited mid‐Holocene accommodation. A similarity solution model effectively reproduces most of the spatial patterns of mass extraction observed in Sylhet basin, except in one location receiving lateral sediment input from a distributary channel. These field and modeling results indicate that grain‐size data and sediment volume measurements can be used to not only reconstruct paleodynamics of transport networks and resulting stratigraphy but also lead to predictive insights on subsurface heterogeneity, and thus improved reservoir and aquifer characterization.

     
    more » « less
  5. Abstract

    Coastal rivers that build deltas undergo repeated avulsion events—that is, abrupt changes in river course—which we need to understand to predict land building and flood hazards in coastal landscapes. Climate change can impact water discharge, flood frequency, sediment supply, and sea level, all of which could impact avulsion location and frequency. Here we present results from quasi‐2D morphodynamic simulations of repeated delta‐lobe construction and avulsion to explore how avulsion location and frequency are affected by changes in relative sea level, sediment supply, and flood regime. Model results indicate that relative sea‐level rise drives more frequent avulsions that occur at a distance from the shoreline set by backwater hydrodynamics. Reducing the sediment supply relative to transport capacity has little impact on deltaic avulsions, because, despite incision in the upstream trunk channel, deltas can still aggrade as a result of progradation. However, increasing the sediment supply relative to transport capacity can shift avulsions upstream of the backwater zone because aggradation in the trunk channel outpaces progradation‐induced delta aggradation. Increasing frequency of overbank floods causes less frequent avulsions because floods scour the riverbed within the backwater zone, slowing net aggradation rates. Results provide a framework to assess upstream and downstream controls on avulsion patterns over glacial‐interglacial cycles, and the impact of land use and anthropogenic climate change on deltas.

     
    more » « less