skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Experimental Approaches for the Synthesis of Low-Valent Metal-Organic Frameworks from Multitopic Phosphine Linkers
Metal-Organic Frameworks (MOFs) are the subject of intense research focus due to their potential applications in gas storage and separation, biomedicine, energy, and catalysis. Recently, low-valent MOFs (LVMOFs) have been explored for their potential use as heterogeneous catalysts, and multitopic phosphine linkers have been shown as a useful building block for the formation of LVMOFs. However, the synthesis of LVMOFs using phosphine linkers requires conditions that are distinct from the majority of the MOF synthetic literature, including the exclusion of air and water and the use of unconventional modulators and solvents, making it somewhat more challenging to access these materials. This work serves as a general tutorial for the synthesis of LVMOFs with phosphine linkers, including information on: 1) judicious choice of metal precursor, modulator, and solvent; 2) experimental procedures, air-free techniques, and required equipment; 3) proper storage and handling of the resultant LVMOFs; and 4) useful characterization methods for these materials. The intention of this report is to lower the barrier and make more accessible this new subfield of MOF research and facilitate advancements toward novel catalytic materials.  more » « less
Award ID(s):
2153240
NSF-PAR ID:
10495735
Author(s) / Creator(s):
; ;
Publisher / Repository:
JoVE
Date Published:
Journal Name:
Journal of Visualized Experiments
Issue:
195
ISSN:
1940-087X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Functional porous metal–organic frameworks (MOFs) have been explored for a number of potential applications in catalysis, chemical sensing, water capture, gas storage, and separation. MOFs are among the most promising candidates to address challenges facing our society related to energy and environment, but the successful implementation of functional porous MOF materials are contingent on their stability; therefore, the rational design of stable MOFs plays an important role towards the development of functional porous MOFs. In this Focus article, we summarize progress in the rational design and synthesis of stable MOFs with controllable pores and functionalities. The implementation of reticular chemistry allows for the rational top-down design of stable porous MOFs with targeted topological networks and pore structures from the pre-selected building blocks. We highlight the reticular synthesis and applications of stable MOFs: (1) MOFs based on high valent metal ions ( e.g. , Al 3+ , Cr 3+ , Fe 3+ , Ti 4+ and Zr 4+ ) and carboxylate ligands; (2) MOFs based on low valent metal ions ( e.g. , Ni 2+ , Cu 2+ , and Zn 2+ ) and azolate linkers. We envision that the synthetic strategies, including modulated synthesis and post-synthetic modification, can potentially be extended to other more complex systems like metal-phosphonate framework materials. 
    more » « less
  2. Abstract

    Low‐valent metal–organic frameworks (LVMOFs) and related materials have gained interest due to their potential applications in heterogeneous catalysis. However, of the few LVMOFs that have been reported, none have shown catalytic activity. Herein, a low‐valent metal‐organic material constructed from phosphine linkers and IrInodes is reported. This material is effectively a crystalline, insoluble analogue of Vaska's complex. As such, the material reversibly binds O2and catalyzes the reductive formation of enamines from amides.

     
    more » « less
  3. Abstract

    Low‐valent metal–organic frameworks (LVMOFs) and related materials have gained interest due to their potential applications in heterogeneous catalysis. However, of the few LVMOFs that have been reported, none have shown catalytic activity. Herein, a low‐valent metal‐organic material constructed from phosphine linkers and IrInodes is reported. This material is effectively a crystalline, insoluble analogue of Vaska's complex. As such, the material reversibly binds O2and catalyzes the reductive formation of enamines from amides.

     
    more » « less
  4. A leading biotechnological advancement in the field of biocatalysis is the immobilization of enzymes on solid supports to create more stable and recyclable systems. Metal-organic frameworks (MOFs) are porous materials that have been explored as solid supports for enzyme immobilization. Composed of organic linkers and inorganic nodes, MOFs feature empty void space with large surface areas and have the ability to be modified post-synthesis. Our target enzyme system for immobilization is glucose oxidase (GOx) and chloroperoxidase (CPO). Glucose oxidase catalyzes the oxidation of glucose and is used for many applications in biosensing, biofuel cells, and food production. Chloroperoxidase is a fungal heme enzyme that catalyzes peroxide-dependent halogenation, oxidation, and hydroxylation. These two enzymes work sequentially in this enzyme system by GOx producing peroxide, which activates CPO that reacts with a suitable substrate. This study focuses on using a zirconium-based MOF, UiO-66-NH2, to immobilize the enzyme system via crosslinking with the MOF’s amine group on the surface of the MOF. This study investigates two different crosslinkers: disuccinimidyl glutarate (DSG) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinidimide (NHS), providing stable crosslinking of the MOF to the enzymes. The two crosslinkers are used to covalently bond CPO and GOx onto UiO-66-NH2, and a comparison of the recyclability and enzymatic activity of the single immobilization of CPO and the doubly immobilized CPO and GOx is discussed through assays and characterization analyses. The DSG-crosslinked composites displayed enhanced activity relative to the free enzyme, and all crosslinked enzyme/MOF composites demonstrated recyclability, with at least 30% of the activity being retained after four catalytic cycles. The results of this report will aid researchers in utilizing CPO as a biocatalyst that is more active and has greater recyclability. 
    more » « less
  5. Abstract

    A tetra(carboxylated) PCP pincer ligand has been synthesized as a building block for porous coordination polymers (PCPs). The air‐ and moisture‐stable PCP metalloligands are rigid tetratopic linkers that are geometrically akin to ligands used in the synthesis of robust metal–organic frameworks (MOFs). Here, the design principle is demonstrated by cyclometalation with PdIICl and subsequent use of the metalloligand to prepare a crystalline 3D MOF by direct reaction with CoIIions and structural resolution by single crystal X‐ray diffraction. The Pd−Cl groups inside the pores are accessible to post‐synthetic modifications that facilitate chemical reactions previously unobserved in MOFs: a Pd−CH3activated material undergoes rapid insertion of CO2gas to give Pd−OC(O)CH3at 1 atm and 298 K. However, since the material is highly selective for the adsorption of CO2over CO, a Pd−N3modified version resists CO insertion under the same conditions.

     
    more » « less