skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Approaches for the Synthesis of Low-Valent Metal-Organic Frameworks from Multitopic Phosphine Linkers
Metal-Organic Frameworks (MOFs) are the subject of intense research focus due to their potential applications in gas storage and separation, biomedicine, energy, and catalysis. Recently, low-valent MOFs (LVMOFs) have been explored for their potential use as heterogeneous catalysts, and multitopic phosphine linkers have been shown as a useful building block for the formation of LVMOFs. However, the synthesis of LVMOFs using phosphine linkers requires conditions that are distinct from the majority of the MOF synthetic literature, including the exclusion of air and water and the use of unconventional modulators and solvents, making it somewhat more challenging to access these materials. This work serves as a general tutorial for the synthesis of LVMOFs with phosphine linkers, including information on: 1) judicious choice of metal precursor, modulator, and solvent; 2) experimental procedures, air-free techniques, and required equipment; 3) proper storage and handling of the resultant LVMOFs; and 4) useful characterization methods for these materials. The intention of this report is to lower the barrier and make more accessible this new subfield of MOF research and facilitate advancements toward novel catalytic materials.  more » « less
Award ID(s):
2153240
PAR ID:
10495735
Author(s) / Creator(s):
; ;
Publisher / Repository:
JoVE
Date Published:
Journal Name:
Journal of Visualized Experiments
Issue:
195
ISSN:
1940-087X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Functional porous metal–organic frameworks (MOFs) have been explored for a number of potential applications in catalysis, chemical sensing, water capture, gas storage, and separation. MOFs are among the most promising candidates to address challenges facing our society related to energy and environment, but the successful implementation of functional porous MOF materials are contingent on their stability; therefore, the rational design of stable MOFs plays an important role towards the development of functional porous MOFs. In this Focus article, we summarize progress in the rational design and synthesis of stable MOFs with controllable pores and functionalities. The implementation of reticular chemistry allows for the rational top-down design of stable porous MOFs with targeted topological networks and pore structures from the pre-selected building blocks. We highlight the reticular synthesis and applications of stable MOFs: (1) MOFs based on high valent metal ions ( e.g. , Al 3+ , Cr 3+ , Fe 3+ , Ti 4+ and Zr 4+ ) and carboxylate ligands; (2) MOFs based on low valent metal ions ( e.g. , Ni 2+ , Cu 2+ , and Zn 2+ ) and azolate linkers. We envision that the synthetic strategies, including modulated synthesis and post-synthetic modification, can potentially be extended to other more complex systems like metal-phosphonate framework materials. 
    more » « less
  2. Water is the most abundant and cleanest natural resource on earth, and it is the driving force of all nature. It not only affects food security, human health, and ecosystem integrity and maintenance, but is also an important driver of energy in industrial production and life. Importantly, water adsorption applications are considered to be highly energy-efficient and environmentally friendly technologies,1 including atmospheric water harvesting,2-4 desiccation of clean gases,5 indoor humidity control,6,7 and adsorptive heat transformation.8,9 However, current water adsorption-related applications are still constrained by properties of adsorbents, such as their low water uptake capacities, poor cyclic stabilities, limited feasibilities over a range of humidity conditions, and minimal commercial availabilities. Conventional nanoporous materials (e.g., silica gels, zeolites, and clays) were the first adsorbents used in water capture applications due to their low cost, commercial availability, and favorable water adsorption kinetics. However, these materials generally suffer from either low water uptake capacities or high regeneration temperature, limiting their use in practical water absorption applications.1,10 Metal-organic frameworks (MOFs), a class of crystalline porous materials, are assembled from inorganic nodes and organic linkers through coordination bonds.11,12 Benefiting from their exceptional porosity and surface area, tunable pore size and geometry, and highly tailorable and designable structures and functionalities, MOFs show considerable potential for gas storage and separation, heterogeneous catalysis, and other energy and environmental sustainability applications.13-17 In recent years, MOFs have also shown great potential for water vapor adsorption because of a growing understanding of the relationship between MOFs and water, as well as an increasing number of reports detailing MOFs that exhibit high water stability.1,4,9 Moreover, judicious design of the MOF structures enables control over their water adsorption properties and the water uptake capacities, which make MOFs ideal candidates for water adsorption-related applications. This review aims to provide an overview of recent advances in the development of MOFs for water adsorption, as well as to offer proposed guidelines to develop even better water adsorption materials. First, we briefly introduce the fundamentals of water adsorption, including how to ascertain key insights based on the shapes of water adsorption isotherms, descriptions of various water adsorption mechanisms, and a discussion on the stability of MOFs in water systems. Next, we discuss several recent reports have detailed how to improve water uptake capacity through the design and synthesis of MOFs. In particular, we highlight the importance of reticular chemistry in the designed synthesis of MOF-based water adsorbent materials. We then shift our focus to discussing the enormous potential of MOFs for use in selective water vapor adsorption applications with both theoretical and practical considerations considered. Finally, we offer our thoughts on the future development of this field in three aspects: chemistry and materials design, process engineering, and commercialization of MOFs for water adsorption. We hope that this review will provide fundamental insights for chemists and inspire them to synthesize MOFs with better water adsorption performance; and provide assistance to engineers researching MOF-based water adsorption devices and working towards the development of highly energy-efficient and environmentally friendly technologies with reduced carbon footprints. 
    more » « less
  3. Pillared paddle-wheel-based metal-organic framework (MOF) materials are an attractive target as they offer a reliable method for constructing well-defined, multifunctional materials. A drawback of these materials, which has limited their application, is their tendency to form catenated frameworks with little accessible volume. To eliminate this disadvantage, it is necessary to investigate strategies for constructing non-catenated pillared paddle-wheel MOFs. Hydrogen-bonding substituents on linkers have been postulated to prevent catenation in certain frameworks and, in this work, we present a new MOF to further bolster this theory. Using 2,2′-diamino-[1,1′-biphenyl]-4,4′-dicarboxylic acid, BPDC-(NH2)2, linkers and dipyridyl glycol, DPG, pillars, we assembled a MOF with pcu topology. The new material is non-catenated, exhibiting large accessible pores and low density. To the best of our knowledge, this material constitutes the pcu framework with the largest pore volume and lowest density. We attribute the lack of catenation to the presence of H-bonding substituents on both linkers. 
    more » « less
  4. A detailed chemical understanding of H2 interactions with binding sites in the nanoporous crystalline structure of metal–organic frameworks (MOFs) can lay a sound basis for the design of new sorbent materials. Computational quantum chemical calculations can aid in this quest. To set the stage, we review general thermodynamic considerations that control the usable storage capacity of a sor- bent. We then discuss cluster modeling of H2 ligation at MOF binding sites using state-of-the-art density functional theory (DFT) calculations, and how the binding can be understood using energy decomposition analysis (EDA). Employing these tools, we illustrate the connections between the character of the MOF binding site and the associated adsorption thermodynamics using four experi- mentally characterized MOFs, highlighting the role of open metal sites (OMSs) in accessing binding strengths relevant to room temperature storage. The sorbents are MOF-5, with no open metal sites, Ni2(m-dobdc), containing Lewis acidic Ni(II) sites, Cu(I)-MFU-4l, containing π basic Cu(I) sites and V2Cl2.8(btdd), also containing π-basic V(II) sites. We next explore the potential for binding multiple H2 molecules at a single metal site, with thermodynamics useful for storage at ambient temperature; a materials design goal which has not yet been experimentally demonstrated. Computations on Ca2+ or Mg2+ bound to catecholate or Ca2+ bound to porphyrin show the potential for binding up to 4 H2; there is precedent for the inclusion of both catecholate and porphyrin motifs in MOFs. Turning to transition metals, we discuss the prediction that two H2 molecules can bind at V(II)-MFU-4l, a material that has been synthesized with solvent coordinated to the V(II) site. Additional calculations demonstrate binding three equivalents of hydrogen per OMS in Sc(I) or Ti(I)-exchanged MFU-4l. Overall, the results suggest promising prospects for experimentally realizing higher capacity hydrogen storage MOFs, if nontrivial synthetic and desolvation challenges can be overcome. Coupled with the unbounded chemical diversity of MOFs, there is ample scope for additional exploration and discovery. 
    more » « less
  5. Metal-Organic Frameworks (MOFs) are a class of modular, porous crystalline materials that have great potential to revolutionize applications such as gas storage, molecular separations, chemical sensing, catalysis, and drug delivery. The Cambridge Structural Database (CSD) reports 10,636 synthesized MOF crystals which in addition contains ca. 114,373 MOF-like structures. The sheer number of synthesized (plus potentially synthesizable) MOF structures requires researchers pursue computational techniques to screen and isolate MOF candidates. In this demo paper, we describe our effort on leveraging knowledge graph methods to facilitate MOF prediction, discovery, and synthesis. We present challenges and case studies about (1) construction of a MOF knowledge graph (MOF-KG) from structured and unstructured sources and (2) leveraging the MOF-KG for discovery of new or missing knowledge. 
    more » « less