skip to main content


This content will become publicly available on June 30, 2024

Title: Low-Memory Krylov Subspace Methods for Optimal Rational Matrix Function Approximation
Abstract. We describe a Lanczos-based algorithm for approximating the product of a rational matrix function with a vector. This algorithm, which we call the Lanczos method for optimal rational matrix function approximation (Lanczos-OR), returns the optimal approximation from a given Krylov subspace in a norm depending on the rational function’s denominator, and it can be computed using the information from a slightly larger Krylov subspace. We also provide a low-memory implementation which only requires storing a number of vectors proportional to the denominator degree of the rational function. Finally, we show that Lanczos-OR can be used to derive algorithms for computing other matrix functions, including the matrix sign function and quadrature-based rational function approximations. In many cases, it improves on the approximation quality of prior approaches, including the standard Lanczos method, with little additional computational overhead.  more » « less
Award ID(s):
2045590
NSF-PAR ID:
10495902
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Society for Industrial and Applied Mathematics
Date Published:
Journal Name:
SIAM Journal on Matrix Analysis and Applications
Volume:
44
Issue:
2
ISSN:
0895-4798
Page Range / eLocation ID:
670 to 692
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Uncertainty quantification for linear inverse problems remains a challenging task, especially for problems with a very large number of unknown parameters (e.g., dynamic inverse problems) and for problems where computation of the square root and inverse of the prior covariance matrix are not feasible. This work exploits Krylov subspace methods to develop and analyze new techniques for large‐scale uncertainty quantification in inverse problems. In this work, we assume that generalized Golub‐Kahan‐based methods have been used to compute an estimate of the solution, and we describe efficient methods to explore the posterior distribution. In particular, we use the generalized Golub‐Kahan bidiagonalization to derive an approximation of the posterior covariance matrix, and we provide theoretical results that quantify the accuracy of the approximate posterior covariance matrix and of the resulting posterior distribution. Then, we describe efficient methods that use the approximation to compute measures of uncertainty, including the Kullback‐Liebler divergence. We present two methods that use the preconditioned Lanczos algorithm to efficiently generate samples from the posterior distribution. Numerical examples from dynamic photoacoustic tomography demonstrate the effectiveness of the described approaches.

     
    more » « less
  2. Krylov subspace methods are a ubiquitous tool for computing near-optimal rank kk approximations of large matrices. While "large block" Krylov methods with block size at least kk give the best known theoretical guarantees, block size one (a single vector) or a small constant is often preferred in practice. Despite their popularity, we lack theoretical bounds on the performance of such "small block" Krylov methods for low-rank approximation. We address this gap between theory and practice by proving that small block Krylov methods essentially match all known low-rank approximation guarantees for large block methods. Via a black-box reduction we show, for example, that the standard single vector Krylov method run for t iterations obtains the same spectral norm and Frobenius norm error bounds as a Krylov method with block size ℓ≥kℓ≥k run for O(t/ℓ)O(t/ℓ) iterations, up to a logarithmic dependence on the smallest gap between sequential singular values. That is, for a given number of matrix-vector products, single vector methods are essentially as effective as any choice of large block size. By combining our result with tail-bounds on eigenvalue gaps in random matrices, we prove that the dependence on the smallest singular value gap can be eliminated if the input matrix is perturbed by a small random matrix. Further, we show that single vector methods match the more complex algorithm of [Bakshi et al. `22], which combines the results of multiple block sizes to achieve an improved algorithm for Schatten pp-norm low-rank approximation. 
    more » « less
  3. The convergence property of a stochastic algorithm for the self-consistent field (SCF) calculations of electron structures is studied. The algorithm is formulated by rewriting the electronic charges as a trace/diagonal of a matrix function, which is subsequently expressed as a statistical average. The function is further approximated by using a Krylov subspace approximation. As a result, each SCF iteration only samples one random vector without having to compute all the orbitals. We consider the common practice of SCF iterations with damping and mixing. We prove that the iterates from a general linear mixing scheme converge in a probabilistic sense when the stochastic error has a second finite moment. 
    more » « less
  4. The Sylvester equation offers a powerful and unifying primitive for a variety of important graph mining tasks, including network alignment, graph kernel, node similarity, subgraph matching, etc. A major bottleneck of Sylvester equation lies in its high computational complexity. Despite tremendous effort, state-of-the-art methods still require a complexity that is at least \em quadratic in the number of nodes of graphs, even with approximations. In this paper, we propose a family of Krylov subspace based algorithms (\fasten) to speed up and scale up the computation of Sylvester equation for graph mining. The key idea of the proposed methods is to project the original equivalent linear system onto a Kronecker Krylov subspace. We further exploit (1) the implicit representation of the solution matrix as well as the associated computation, and (2) the decomposition of the original Sylvester equation into a set of inter-correlated Sylvester equations of smaller size. The proposed algorithms bear two distinctive features. First, they provide the \em exact solutions without any approximation error. Second, they significantly reduce the time and space complexity for solving Sylvester equation, with two of the proposed algorithms having a \em linear complexity in both time and space. Experimental evaluations on a diverse set of real networks, demonstrate that our methods (1) are up to $10,000\times$ faster against Conjugate Gradient method, the best known competitor that outputs the exact solution, and (2) scale up to million-node graphs. 
    more » « less
  5. Abstract

    Numerical solution of the time‐dependent Schrödinger equation with a position‐dependent effective mass is challenging to compute due to the presence of the non‐constant effective mass. To tackle the problem we present operator splitting‐based numerical methods. The wavefunction will be propagated either by the Krylov subspace method‐based exponential integration or by an asymptotic Green's function‐based time propagator. For the former, the wavefunction is given by a matrix exponential whose associated matrix–vector product can be approximated by the Krylov subspace method; and for the latter, the wavefunction is propagated by an integral with retarded Green's function that is approximated asymptotically. The methods have complexity per step with appropriate algebraic manipulations and fast Fourier transform, where is the number of spatial points. Numerical experiments are presented to demonstrate the accuracy, efficiency, and stability of the methods.

     
    more » « less