skip to main content


Title: Simple Analysis of Priority Sampling
We prove a tight upper bound on the variance of the priority sampling method (aka sequential Poisson sampling). Our proof is significantly shorter and simpler than the original proof given by Mario Szegedy at STOC 2006, which resolved a conjecture by Duffield, Lund, and Thorup.  more » « less
Award ID(s):
2106888
PAR ID:
10495906
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Society for Industrial and Applied Mathematics
Date Published:
Journal Name:
SIAM Symposium on Simplicity in Algorithms
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Proving motion planning infeasibility is an important part of a complete motion planner. Common approaches for high-dimensional motion planning are only probabilistically complete. Previously, we presented an algorithm to construct infeasibility proofs by applying machine learning to sampled configurations from a bidirectional sampling-based planner. In this work, we prove that the learned manifold converges to an infeasibility proof exponentially. Combining prior approaches for sampling-based planning and our converging infeasibility proofs, we propose the term asymptotic completeness to describe the property of returning a plan or infeasibility proof in the limit. We compare the empirical convergence of different sampling strategies to validate our analysis. 
    more » « less
  2. Shell, Dylan A ; Toussaint, Marc (Ed.)
    We present a learning-based approach to prove infeasibility of kinematic motion planning problems. Sampling-based motion planners are effective in high-dimensional spaces but are only probabilistically complete. Consequently, these planners cannot provide a definite answer if no plan exists, which is important for high-level scenarios, such as task-motion planning. We propose a combination of bidirectional sampling-based planning (such as RRT-connect) and machine learning to construct an infeasibility proof alongside the two search trees. An infeasibility proof is a closed manifold in the obstacle region of the configuration space that separates the start and goal into disconnected components of the free configuration space. We train the manifold using common machine learning techniques and then triangulate the manifold into a polytope to prove containment in the obstacle region. Under assumptions about learning hyper-parameters and robustness of configuration space optimization, the output is either an infeasibility proof or a motion plan. We demonstrate proof construction for 3-DOF and 4-DOF manipulators and show improvement over a previous algorithm. 
    more » « less
  3. Ta-Shma, Amnon (Ed.)
    Suppose that a target distribution can be approximately sampled by a low-depth decision tree, or more generally by an efficient cell-probe algorithm. It is shown to be possible to restrict the input to the sampler so that its output distribution is still not too far from the target distribution, and at the same time many output coordinates are almost pairwise independent. This new tool is then used to obtain several new sampling lower bounds and separations, including a separation between AC0 and low-depth decision trees, and a hierarchy theorem for sampling. It is also used to obtain a new proof of the Patrascu-Viola data-structure lower bound for Rank, thereby unifying sampling and data-structure lower bounds. 
    more » « less
  4. We present a learning-based approach to prove infeasibility of kinematic motion planning problems. Sampling-based motion planners are effective in high-dimensional spaces but are only probabilistically complete. Consequently, these planners cannot provide a definite answer if no plan exists, which is important for high-level scenarios, such as task-motion planning. We apply data generated during multi-directional sampling-based planning (such as PRM) to a machine learning approach to construct an infeasibility proof. An infeasibility proof is a closed manifold in the obstacle region of the configuration space that separates the start and goal into disconnected components of the free configuration space. We train the manifold using common machine learning techniques and then triangulate the manifold into a polytope to prove containment in the obstacle region. Under assumptions about the hyper-parameters and robustness of configuration space optimization, the output is either an infeasibility proof or a motion plan in the limit. We demonstrate proof construction for up to 4-DOF configuration spaces. A large part of the algorithm is parallelizable, which offers potential to address higher dimensional configuration spaces.

     
    more » « less
  5. Training a classifier over a large number of classes, known as ’extreme classification’, has become a topic of major interest with applications in technology, science, and e-commerce. Traditional softmax regression induces a gradient cost proportional to the number of classes C, which often is prohibitively expensive. A popular scalable softmax approximation relies on uniform negative sampling, which suffers from slow convergence due a poor signal-to-noise ratio. In this paper, we propose a simple training method for drastically enhancing the gradient signal by drawing negative samples from an adversarial model that mimics the data distribution. Our contributions are three-fold: (i) an adversarial sampling mechanism that produces negative samples at a cost only logarithmic in C, thus still resulting in cheap gradient updates; (ii) a mathematical proof that this adversarial sampling minimizes the gradient variance while any bias due to non-uniform sampling can be removed; (iii) experimental results on large scale data sets that show a reduction of the training time by an order of magnitude relative to several competitive baselines. 
    more » « less