skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Blood oxygen transport and depletion in diving emperor penguins
ABSTRACT Oxygen store management underlies dive performance and is dependent on the slow heart rate and peripheral vasoconstriction of the dive response to control tissue blood flow and oxygen uptake. Prior research has revealed two major patterns of muscle myoglobin saturation profiles during dives of emperor penguins. In Type A profiles, myoglobin desaturated rapidly, consistent with minimal muscle blood flow and low tissue oxygen uptake. Type B profiles, with fluctuating and slower declines in myoglobin saturation, were consistent with variable tissue blood flow patterns and tissue oxygen uptake during dives. We examined arterial and venous blood oxygen profiles to evaluate blood oxygen extraction and found two primary patterns of venous hemoglobin desaturation that complemented corresponding myoglobin saturation profiles. Type A venous profiles had a hemoglobin saturation that (a) increased/plateaued for most of a dive's duration, (b) only declined during the latter stages of ascent, and (c) often became arterialized [arterio-venous (a-v) shunting]. In Type B venous profiles, variable but progressive hemoglobin desaturation profiles were interrupted by inflections in the profile that were consistent with fluctuating tissue blood flow and oxygen uptake. End-of-dive saturation of arterial and Type A venous hemoglobin saturation profiles were not significantly different, but did differ from those of Type B venous profiles. These findings provide further support that the dive response of emperor penguins is a spectrum of cardiac and vascular components (including a-v shunting) that are dependent on the nature and demands of a given dive and even of a given segment of a dive.  more » « less
Award ID(s):
1643532
PAR ID:
10495929
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
227
Issue:
6
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ---- (Ed.)
    The anatomy and function of the respiratory systems of penguins are reviewed in relation to gas exchange and minimization of the risks of pulmonary barotrauma, decompression sickness and nitrogen narcosis during dives. Topics include available lung morphology and morphometry, respiratory air volumes determined with different techniques, review of possible physiological and biomechanical mechanisms of baroprotection, calculations of baroprotection limits and review of air sac and arterial partial pressure of oxygen (PO2) profiles in relation to movement of air during breathing and during dives. Limits for baroprotection to 200, 400 and 600 m in Adélie, king and emperor penguins, respectively, would require complete transfer of air sac air and reductions in the combined tracheobronchial tree—parabronchial volume of 24% in Adélie, 53% in king penguins and 76% in emperor penguins. Air sac and arterial PO2profiles at rest and during surface activity were consistent with unidirectional air flow through the lungs. During dives, PO2profiles were more complex, but were consistent with compression of air sac air into the parabronchi and air capillaries with or without additional air mixing induced by potential differential air sac pressures generated by wing movements. This article is part of the theme issue ‘The biology of the avian respiratory system’. 
    more » « less
  2. null (Ed.)
    Some marine birds and mammals can perform dives of extraordinary duration and depth. Such dive performance is dependent on many factors, including total body oxygen (O2) stores. For diving penguins, the respiratory system (air sacs and lungs) constitutes 30-50% of the total body O2 store. To better understand the role and mechanism of parabronchial ventilation and O2 utilization in penguins both on the surface and during the dive, we examined air sac partial pressures of O2 (PO2) in emperor penguins (Aptenodytes forsteri) equipped with backpack PO2 recorders. Cervical air sac PO2s at rest were lower than in other birds, while the cervical air sac to posterior thoracic air sac PO2 difference was larger. Pre-dive cervical air sac PO2s were often greater than those at rest, but had a wide range and were not significantly different from those at rest. The maximum respiratory O2 store and total body O2 stores calculated with representative anterior and posterior air sac PO2 data did not differ from prior estimates. The mean calculated anterior air sac O2 depletion rate for dives up to 11 min was approximately one-tenth that of the posterior air sacs. Low cervical air sac PO2s at rest may be secondary to a low ratio of parabronchial ventilation to parabronchial blood O2 extraction. During dives, overlap of simultaneously recorded cervical and posterior thoracic air sac PO2 profiles supported the concept of maintenance of parabronchial ventilation during a dive by air movement through the lungs. 
    more » « less
  3. null (Ed.)
    The dive response, bradycardia (decreased heart rate) and peripheral vasoconstriction, is the key mechanism allowing breath-hold divers to perform long-duration dives while actively swimming and hunting prey. This response is variable and modulated by factors such as dive duration, depth, exercise and cognitive control. This study assesses the potential role of exercise and relative lung volume in the regulation of heart rate (fH) during dives of adult female California sea lions instrumented with ECG, depth, and 3-axis acceleration data loggers. A positive relationship between activity (minimum specific acceleration) and fH throughout dives suggested increased muscle perfusion associated with exercise. However, apart from late ascent, fH during dives was still less than or equal to resting heart rate (on land). In addition, the activity-fH relationship was weaker in long, deep dives consistent with prioritization of blood oxygen conservation over blood oxygen delivery to muscle in those dives. Pulmonary stretch receptor reflexes may also contribute to fH regulation as fH profiles generally paralleled changes in relative lung volume, especially in shallower dives and during early descent and late ascent of deeper dives. Overall, these findings support the concept that both exercise and pulmonary stretch receptor reflexes may influence the dive response in sea lions. 
    more » « less
  4. OBJECTIVES/GOALS: For patients suffering from respiratory failure there are limited options to support gas exchange aside from mechanical ventilation. Our goal is to design, investigate, and refine a novel device for extrapulmonary gas exchange via peritoneal perfusion with perfluorocarbons (PFC) in an animal model. METHODS/STUDY POPULATION: Hypoxic respiratory failure will be modeled using 50 kg swine mechanically ventilated with subatmospheric (10-12%) oxygen. Through a midline laparotomy, two cannulas, one for inflow and one for outflow, will be placed into the peritoneal space. After abdominal closure, the cannulas will be connected to a device capable of draining, oxygenating, regulating temperature, filtering, and pumping perfluorodecalin at a rate of 3-4 liters per minute. During induced hypoxia, the physiologic response to PFC circulation through the peritoneal space will be monitored with invasive (e.g. arterial and venous blood gases) and non-invasive measurements (e.g. pulse oximetry). RESULTS/ANTICIPATED RESULTS: We anticipate that the initiation of oxygenated perfluorocarbons perfusion through the peritoneal space during induced hypoxia will create an increase in hemoglobin oxygen saturation and partial pressure of oxygen in arterial blood. As we expect gas exchange to be occurring in the microvascular beds of the peritoneal membrane, we expect to observe an increase in the venous blood oxygen content sampled from the inferior vena cava. Using other invasive hemodynamic measures (e.g. cardiac output) and blood samples taken from multiple venous sites, a quantifiable rate of oxygen delivery will be calculable. DISCUSSION/SIGNIFICANCE: Peritoneal perfluorocarbon perfusion, if able to deliver significant amounts of oxygen, would provide a potentially lifesaving therapy for patients in respiratory failure who are unable to be supported with mechanical ventilation alone, and are not candidates for extracorporeal membrane oxygenation. 
    more » « less
  5. Abstract ObjectiveAn improved understanding of the role of the leptomeningeal collateral circulation in blood flow compensation following middle cerebral artery (MCA) occlusion can contribute to more effective treatment development for ischemic stroke. The present study introduces a model of the cerebral circulation to predict cerebral blood flow and tissue oxygenation following MCA occlusion. MethodsThe model incorporates flow regulation mechanisms based on changes in pressure, shear stress, and metabolic demand. Oxygen saturation in cerebral vessels and tissue is calculated using a Krogh cylinder model. The model is used to assess the effects of changes in oxygen demand and arterial pressure on cerebral blood flow and oxygenation after MCA occlusion. ResultsAn increase from five to 11 leptomeningeal collateral vessels was shown to increase the oxygen saturation in the region distal to the occlusion by nearly 100%. Post‐occlusion, the model also predicted a loss of autoregulation and a decrease in flow to the ischemic territory as oxygen demand was increased; these results were consistent with data from experiments that induced cerebral ischemia. ConclusionsThis study highlights the importance of leptomeningeal collaterals following MCA occlusion and reinforces the idea that lower oxygen demand and higher arterial pressure improve conditions of flow and oxygenation. 
    more » « less