There is an established gender gap in middle school math education, where female students report higher anxiety and lower engagement, which negatively impact their performance and even long-term career choices. This work investigates the role of digital learning games in addressing this issue by studying Decimal Point, a math game that teaches decimal numbers and operations to 5th and 6th graders. Through data from four published studies of Decimal Point, involving 624 students in total, the authors identified a consistent gender difference that was replicated across all studies – male students tended to do better at pretest, while female students tended to learn more from the game. In addition, female students were more careful in answering self-explanation questions, which significantly mediated the relationship between gender and learning gains in two out of four studies. These findings show that learning games can be an effective tool for bridging the gender gap in middle school math education, which in turn contributes to the development of more personalized and inclusive learning platforms.
more »
« less
Verbal labels influence children's processing of decimal magnitudes
Verbal labels for math concepts influence multiple aspects of math learning. In this study, we examined the influence of point labels (e.g., .42 as “point four two”), decomposed labels (e.g., “four tenths and two hundredths”), and common-unit labels (e.g., “forty-two hundredths”) on children’s processing and representation of decimal magnitudes. We randomly assigned 162 5th- and 6th-graders to briefly learn decomposed, common-unit, or point labels. Children then completed measures of decimal magnitude processing and representation. We found that the place-value labels (i.e., decomposed and common-unit labels) each showed unique advantages in reducing the whole-number bias, and common-unit labels also reduced componential processing. No difference was found in the ratio effect – which served as an index of the precision of decimal magnitude representation - among children from the three conditions. These findings add to our understanding of the role of verbal labels in math learning and have important implications for instructional practices.
more »
« less
- PAR ID:
- 10495964
- Publisher / Repository:
- Journal of Applied Developmental Psychology
- Date Published:
- Journal Name:
- Journal of Applied Developmental Psychology
- Volume:
- 86
- ISSN:
- 0193-3973
- Page Range / eLocation ID:
- 101537
- Subject(s) / Keyword(s):
- verbal labels, decimal magnitude, whole-number bias, componential processing, ratio effect
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is an established gender gap in middle school math education, where female students report higher anxiety and lower engagement, which negatively impact their performance and even long-term career choices. This work investigates the role of digital learning games in addressing this issue by studying Decimal Point, a math game that teaches decimal numbers and operations to 5th and 6th graders. Through data from four published studies of Decimal Point, involving 624 students in total, the authors identified a consistent gender difference that was replicated across all studies – male students tended to do better at pretest, while female students tended to learn more from the game. In addition, female students were more careful in answering self-explanation questions, which significantly mediated the relationship between gender and learning gains in two out of four studies. These findings show that learning games can be an effective tool for bridging the gender gap in middle school math education, which in turn contributes to the development of more personalized and inclusive learning platforms.more » « less
-
Fixed-point decimal operations in databases with arbitrary-precision arithmetic refer to the ability to store and operate decimal fraction numbers with an arbitrary length of digits. This type of operation has become a requirement for many applications, including scientific databases, financial data processing, geometric data processing, and cryptography. However, the state-of-the-art fixed-point decimal technology either provides high performance for low-precision operations or supports arbitrary-precision arithmetic operations at low performance. In this paper, we present a design and implementation of a framework called UltraPrecise which supports arbitraryprecision arithmetic for databases on GPU, aiming to gain high performance for arbitrary-precision arithmetic operations. We build our framework based on the just-in-time compilation technique and optimize its performance via data representation design, PTX acceleration, and expression scheduling. UltraPrecise achieves comparable performance to other high-performance databases for low-precision arithmetic operations. For highprecision, we show that UltraPrecise consistently outperforms existing databases by two orders of magnitude, including workloads of RSA encryption and trigonometric function approximation.more » « less
-
Digital learning games can help address gender disparities in math by promoting better learning experiences and outcomes for girls. However, there is a need for more research to understand why some digital learning games might be especially effective for girls studying mathematics. In this study, we assess two possible pathways: that girls might benefit from math games because they reduce the anxiety and evaluation apprehension that girls are more likely to experience when doing math; and that girls might benefit from math games when they enjoy the narrative and thus experience greater engagement. To evaluate these pathways, our work uses multiple dimensions of gender (e.g., gender identity and gender-typed interests, activities, and traits) and surveys of affective experiences to examine the impact of three learning systems with identical learning content: a digital learning game, Decimal Point, that has consistently led to better learning for girls over boys; a new masculine-typed game, Ocean Adventure, developed based on a survey of over 300 students; and a conventional tutoring system. We predicted that girls and students with stronger feminine-typed characteristics would experience less math anxiety in both Decimal Point and Ocean Adventure compared to the tutor. We also predicted that girls and students with stronger feminine-typed characteristics would experience greater engagement and learning with Decimal Point while boys and students with stronger masculine-typed characteristics would experience greater engagement and learning with Ocean Adventure. Consistent with predictions, students with stronger feminine-typed characteristics experienced less anxiety and evaluation apprehension in both games compared to the tutor. This suggests that math learning games may provide a way to address these negative affective experiences. In terms of our measures of engagement, we found that students with stronger masculine-typed characteristics reported greater experience of mastery in the masculine Ocean Adventure; however, this was the only indicator that the more masculine narrative of Ocean Adventure led to different experiences based on gender. This suggests that narrative alone may not have a strong enough effect on students based on gender, especially when other game features are kept constant. Contrary to our predictions, there were no effects of gender identity or condition on learning outcomes, although both masculine-typed and feminine-typed characteristics were negatively associated with learning. Overall, these results point to the value of a multi-dimensional model of gender in assessing learning with a game, the important role learning games can have in reducing math anxiety and evaluation apprehension for girls and students with feminine-typed characteristics, and the nuanced effects of game narratives on experiences with game-based learning.more » « less
-
Stereotypes about men being better than women at mathematics appear to influence female students’ interest and performance in mathematics. Given the potential motivational benefits of digital learning games, it is possible that games could help to reduce math anxiety, increase self-efficacy, and lead to better learning outcomes for female students. We are exploring this possibility in our work with Decimal Point, a digital learning game that scaffolds practice with decimal operations for 5th and 6th grade students. In several studies with various versions of the game, involving over 800 students across multiple years, we have consistently uncovered a learning advantage for female students with the game. In our most recent investigation of this gender effect, we decided to experiment with a central feature of the game: its use of prompted self-explanation to support student learning. Prior research has suggested that female students might benefit more from self-explanation than male students. In the new study, involving 214 middle school students, we compared three versions of self-explanation in the game – menu-based, scaffolded, and focused – each presenting students with a different type of prompted self-explanation after they solved problems in the game. We found that the focused approach led to more learning across all students than the menu-based approach, a result reported in an earlier paper. In the additional results reported in this paper, we again uncovered the gender effect – female students learned more from the game than male students, regardless of the version of self-explanation – and also found a trend in which female students made fewer self-explanation errors, suggesting they may have been more deliberate and thoughtful in their self-explanations. This self-explanation finding is a possible key to further investigation into how and why we see the gender effect in Decimal Point.more » « less
An official website of the United States government

