skip to main content


Title: Life cycle assessment of green–grey coastal flood protection infrastructure: a case study from New Orleans
Abstract

The study compared the life cycle environmental impacts of three coastal flood management strategies: grey infrastructure (levee), green–grey infrastructure (levee and oyster reef), and a do-nothing scenario, considering the flood damage of a single flooding event in the absence of protection infrastructure. A case study was adopted from a New Orleans, Louisiana residential area to facilitate the comparison. Hazus software, design guidelines, reports, existing projects, and literature were utilized as foreground data for modelling materials. A process-based life cycle assessment was used to assess environmental impacts. The life cycle environmental impacts included global warming, ozone depletion, acidification, eutrophication, smog formation, resource depletion, ecotoxicity, and various human health effects. The ecoinvent database was used for the selected life cycle unit processes. The mean results show green–grey infrastructure as the most promising strategy across most impact categories, reducing 47% of the greenhouse gas (GHG) emissions compared to the do-nothing strategy. Compared to grey infrastructure, green–grey infrastructure mitigates 13%–15% of the environmental impacts while providing equivalent flood protection. A flooding event with a 100-year recurrence interval in the study area is estimated at 34 million kg of CO2equivalent per kilometre of shoreline, while grey and green–grey infrastructure mitigating such flooding is estimated to be 21 and 18 million kg, respectively. This study reinforced that coastal flooding environmental impacts are primarily caused by rebuilding damaged houses, especially concrete and structural timber replacement, accounting for 90% of GHG emissions, with only 10% associated with flood debris waste treatment. The asphalt cover of the levee was identified as the primary contributor to environmental impacts in grey infrastructure, accounting for over 75% of GHG emissions during construction. We found that there is an important interplay between grey and green infrastructure and optimizing their designs can offer solutions to sustainable coastal flood protection.

 
more » « less
NSF-PAR ID:
10498751
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Infrastructure and Sustainability
Volume:
4
Issue:
2
ISSN:
2634-4505
Format(s):
Medium: X Size: Article No. 025001
Size(s):
["Article No. 025001"]
Sponsoring Org:
National Science Foundation
More Like this
  1. It is generally acknowledged that interdependent critical infrastructure in coastal urban areas is constantly threatened by storm-induced flooding. Due to changing climate effects, such as sea level rise (SLR), the occurrence of catastrophic events will be more frequent and may trigger an increased likelihood of severe hazards. Planning a protective measure or mitigation strategy is a complex problem given the constraints that it must fit within a prescribed and limited fiscal budget and be beneficial to the community it protects both socially and economically. This article proposes a methodology for optimizing protective measures and mitigation strategies for interdependent infrastructures subjected to storm-induced flooding and climate change impacts such as SLR. Optimality is defined in this methodology as a maximum reduction in overall expected losses within a prescribed budget (compared to the expected losses in the case of doing nothing for protection/mitigation). Protective measures can include seawalls, barriers, artificial dunes, restoration of wetlands, raising individual buildings, sealing parts of the infrastructure, strategic retreat, insurance, and many more. The optimal protective strategy can be a combination of several protective measures implemented over space and time. The optimization process starts with parameterizing the protective measures. Storm-induced flooding and SLR, and their corresponding consequences, are estimated using a GIS-based subdivision-redistribution methodology (GISSR) developed by the authors for finding a rough solution in the first brute-force iterations of the optimization loop. A storm surge computational model called GeoClaw is subsequently used to simulate ensembles of synthetic storms in order to fine-tune and achieve the optimal solution. Damage loss, including economic impacts, is quantified based on calculated flood estimates. The suitability of the potential optimal solution is examined and assessed with input from stakeholders' interviews. It should be mentioned that the results and conclusions provided in this work depend on the assumptions made about future sea level rise (SLR). The authors acknowledge that there are other, more severe predictions for sea level rise (SLR), than the one used in this paper. 
    more » « less
  2. The objective of this research is to evaluate the effects of cropping choices on land, water use for irrigation, and greenhouse gas emissions after introducing canola (Brassica napus L.) cultivation for the production of 60 million gallons of biodiesel per year. Characterization of regional farm-level cropping patterns and agronomic inputs and economic data are used to model the adoption of canola in place of the diverse incumbent cropping patterns in four regions of California: Northern and Southern San Joaquin Valleys, Sacramento Valley, and Southern California, using the Bioenergy Crop Adoption Model. The life cycle assessment approach is then used to assess environmental impacts due to cultivation of canola in place of the incumbent cropping patterns in terms of: (1) land use; (2) life-cycle greenhouse gas emissions due to direct land use change (kg CO2e ac-1); (3) greenhouse gas emissions due to irrigation water (kg CO2e ac-1); and (4) life-cycle greenhouse gas emissions expressed in grams of carbon dioxide equivalent per megajoule of biodiesel. Preliminary results show the adoption price of the canola with a yield of 1.5 U.S. tons per acre is estimated to be $481 per ton of canola in 2012 dollars at which point a total of 508,400 acres appear in canola cultivation. This land area (508, 400 acres) is equivalent to approximately 89 million gallons of biodiesel from canola per year given the assumptions stated in this study. Consequentially, crops that are less profitable are replaced with canola and greenhouse gas emissions due to irrigation water are reduced while maintaining a diversified percentage of the incumbent cropping patterns, as well as canola cultivation. 
    more » « less
  3. The objective of this research is to evaluate the effects of cropping choices on land, water use for irrigation, and greenhouse gas emissions after introducing canola (Brassica napus L.) cultivation for the production of 60 million gallons of biodiesel per year. Characterization of regional farm-level cropping patterns and agronomic inputs and economic data are used to model the adoption of canola in place of the diverse incumbent cropping patterns in four regions of California: Northern and Southern San Joaquin Valleys, Sacramento Valley, and Southern California, using the Bioenergy Crop Adoption Model. The life cycle assessment approach is then used to assess environmental impacts due to cultivation of canola in place of the incumbent cropping patterns in terms of: (1) land use; (2) life-cycle greenhouse gas emissions due to direct land use change (kg CO2e ac-1); (3) greenhouse gas emissions due to irrigation water (kg CO2e ac-1); and (4) life-cycle greenhouse gas emissions expressed in grams of carbon dioxide equivalent per megajoule of biodiesel. Preliminary results show the adoption price of the canola with a yield of 1.5 U.S. tons per acre is estimated to be $481 per ton of canola in 2012 dollars at which point a total of 508,400 acres appear in canola cultivation. This land area (508, 400 acres) is equivalent to approximately 89 million gallons of biodiesel from canola per year given the assumptions stated in this study. Consequentially, crops that are less profitable are replaced with canola and greenhouse gas emissions due to irrigation water are reduced while maintaining a diversified percentage of the incumbent cropping patterns, as well as canola cultivation. 
    more » « less
  4. High energy density lithium-O2 batteries have potential to increase electric vehicle driving range, but commercialization is prevented by technical challenges. Researchers have proposed electrolytes, catalysts, and binders to improve the battery capacity and reduce capacity fade. Novel battery design, however, is not always consistent with reduction in greenhouse gas (GHG) emissions. Optimizing battery design using solely electrochemical metrics ignores variations in the environmental impacts of different materials. The lack of uniform reporting practices further complicates such efforts. This paper presents commonly used lithium-O2 battery materials along with their GHG emissions. We use LCA methodology to estimate GHG emissions for five proposed lithium-O2 battery designs: (i) without catalyst, (ii) with catalyst, (iii) carbon-less and binder-less, (iv) anode protection, and (v) carbon-less, binder-less with gold catalyst. This work highlights knowledge gaps in lithium-O2 battery LCA, provides a benchmark to quantify battery composition impacts, and demonstrates the GHG emissions associated with certain materials and designs for laboratory-scale batteries. Predicted GHG emissions range from 10–70 kg of CO2 equivalent (kg CO2𝑒) kg−1 of battery, 60–1200 kg CO2𝑒 kWh−1, and 0.15–21 kg CO2𝑒 per km of vehicle travel, if battery replacement is considered. 
    more » « less
  5. null (Ed.)
    Flooding during extreme weather events damages critical infrastructure, property, and threatens lives. Hurricane María devastated Puerto Rico (PR) on 20 September 2017. Sixty-four deaths were directly attributable to the flooding. This paper describes the development of a hydrologic model using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA), capable of simulating flood depth and extent for the Añasco coastal flood plain in Western PR. The purpose of the study was to develop a numerical model to simulate flooding from extreme weather events and to evaluate the impacts on critical infrastructure and communities; Hurricane María is used as a case study. GSSHA was calibrated for Irma, a Category 3 hurricane, which struck the northeastern corner of the island on 7 September 2017, two weeks before Hurricane María. The upper Añasco watershed was calibrated using United States Geological Survey (USGS) stream discharge data. The model was validated using a storm of similar magnitude on 11–13 December 2007. Owing to the damage sustained by PR’s WSR-88D weather radar during Hurricane María, rainfall was estimated in this study using the Weather Research Forecast (WRF) model. Flooding in the coastal floodplain during Hurricane María was simulated using three methods: (1) Use of observed discharge hydrograph from the upper watershed as an inflow boundary condition for the coastal floodplain area, along with the WRF rainfall in the coastal flood plain; (2) Use of WRF rainfall to simulate runoff in the upper watershed and coastal flood plain; and (3) Similar to approach (2), except the use of bias-corrected WRF rainfall. Flooding results were compared with forty-two values of flood depth obtained during face-to-face interviews with residents of the affected communities. Impacts on critical infrastructure (water, electric, and public schools) were evaluated, assuming any structure exposed to 20 cm or more of flooding would sustain damage. Calibration equations were also used to improve flood depth estimates. Our model included the influence of storm surge, which we found to have a minimal effect on flood depths within the study area. Water infrastructure was more severely impacted by flooding than electrical infrastructure. From these findings, we conclude that the model developed in this study can be used with sufficient accuracy to identify infrastructure affected by future flooding events. 
    more » « less