Abstract Horizontal transfer of genetic material in eukaryotes has rarely been documented over short evolutionary timescales. Here, we show that two retrotransposons,ShellderandSpoink, invaded the genomes of multiple species of themelanogastersubgroup within the last 50 years. Through horizontal transfer,Spoinkspread inD. melanogasterduring the 1980s, while bothShellderandSpoinkinvadedD. simulansin the 1990s. Possibly following hybridization,D. simulansinfected the island endemic speciesD. mauritiana(Mauritius) andD. sechellia(Seychelles) with both TEs after 1995. In the same approximate time-frame,Shellderalso invadedD. teissieri, a species confined to sub-Saharan Africa. We find that the donors ofShellderandSpoinkare likely AmericanDrosophilaspecies from thewillistoni,cardini, andrepletagroups. Thus, the described cascade of TE invasions could only become feasible afterD. melanogasterandD. simulansextended their distributions into the Americas 200 years ago, likely aided by human activity. Our work reveals that cascades of TE invasions, likely initiated by human-mediated range expansions, could have an impact on the genomic and phenotypic evolution of geographically dispersed species. Within a few decades, TEs could invade many species, including island endemics, with distributions very distant from the donor of the TE. 
                        more » 
                        « less   
                    
                            
                            Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species
                        
                    
    
            Abstract BackgroundInsects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species ofDrosophila melanogastersubgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size betweenD. mauritianaand its sibling speciesD. simulans. ResultsWe confirmed thatD. mauritianahave rapidly evolved larger eyes as a result of more and wider ommatidia thanD. simulanssince they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity forD. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted forDrosophila simulanswith smaller ommatidia and found evidence for higher temporal resolution. ConclusionsOur study demonstrates that even subtle differences in ommatidia size between closely relatedDrosophilaspecies can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among otherDrosophilaspecies, other dipterans and other insects are needed to better understand compound eye structure–function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1750833
- PAR ID:
- 10496064
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- BMC Biology
- Volume:
- 22
- Issue:
- 1
- ISSN:
- 1741-7007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Malik, Harmit S. (Ed.)Suppression of transposable elements (TEs) is paramount to maintain genomic integrity and organismal fitness. InD.melanogaster, theflamencolocus is a master suppressor of TEs, preventing the mobilization of certain endogenous retrovirus-like TEs from somatic ovarian support cells to the germline. It is transcribed by Pol II as a long (100s of kb), single-stranded, primary transcript, and metabolized into ~24–32 nt Piwi-interacting RNAs (piRNAs) that target active TEs via antisense complementarity.flamencois thought to operate as a trap, owing to its high content of recent horizontally transferred TEs that are enriched in antisense orientation. Using newly-generated long read genome data, which is critical for accurate assembly of repetitive sequences, we find thatflamencohas undergone radical transformations in sequence content and even copy number acrosssimulansclade Drosophilid species.Drosophila simulans flamencohas duplicated and diverged, and neither copy exhibits synteny withD.melanogasterbeyond the core promoter. Moreover,flamencoorganization is highly variable acrossD.simulansindividuals. Next, we find thatD.simulansandD.mauritiana flamencodisplay signatures of a dual-stranded cluster, with ping-pong signals in the testis and/or embryo. This is accompanied by increased copy numbers of germline TEs, consistent with these regions operating as functional dual-stranded clusters. Overall, the physical and functional diversity offlamencoorthologs is testament to the extremely dynamic consequences of TE arms races on genome organization, not only amongst highly related species, but even amongst individuals.more » « less
- 
            Jaramillo-Lambert, Aimee (Ed.)Meiotic recombination plays an important role in ensuring proper chromosome segregation during meiosis I through the creation of chiasmata that connect homologous chromosomes. Recombination plays an additional role in evolution by creating new allelic combinations. Organisms display species-specific crossover patterns, but how these patterns are established is poorly understood.Drosophila mauritianadisplays a different meiotic recombination pattern compared toDrosophila melanogaster, withD. mauritianaexperiencing a reduced centromere effect, the suppression of recombination emanating from the centromeres. To evaluate the contribution of the synaptonemal complex (SC) C(3)G protein to these recombination rate differences, theD. melanogasterallele was replaced withD. mauritiana c(3)Gcoding sequence. We found that theD. mauritianaC(3)G could interact with theD. melanogasterSC machinery to build full length tripartite SC and chromosomes segregated accurately, indicating sufficient crossovers were generated. However, the placement of crossovers was altered, displaying an increase in frequency in the centromere-proximal euchromatin indicating a decrease in the centromere effect, similar to that observed inD. mauritianafemales. Recovery of chromatids with more than one crossover was also increased, likely due to the larger chromosome span now available for crossovers. As replacement of a single gene mediated a strong shift of one species’ crossover pattern towards another species, it indicates a small number of discrete factors may have major influence on species-specific crossover patterning. Additionally, it demonstrates the SC, a structure known to be required for crossover formation in many species, is likely one of these discrete factors.more » « less
- 
            MacQueen, A (Ed.)Abstract We present an SNP-based crossover map for Drosophila mauritiana. Using females derived by crossing 2 different strains of D. mauritiana, we analyzed crossing over on all 5 major chromosome arms. Analysis of 105 male progeny allowed us to identify 327 crossover chromatids bearing single, double, or triple crossover events, representing 398 crossover events. We mapped the crossovers along these 5 chromosome arms using a genome sequence map that includes the euchromatin-heterochromatin boundary. Confirming previous studies, we show that the overall crossover frequency in D. mauritiana is higher than is seen in Drosophila melanogaster. Much of the increase in exchange frequency in D. mauritiana is due to a greatly diminished centromere effect. Using larval neuroblast metaphases from D. mauritiana—D. melanogaster hybrids we show that the lengths of the pericentromeric heterochromatin do not differ substantially between the species, and thus cannot explain the observed differences in crossover distribution. Using a new and robust maximum likelihood estimation tool for obtaining Weinstein tetrad distributions, we observed an increase in bivalents with 2 or more crossovers when compared with D. melanogaster. This increase in crossing over along the arms of D. mauritiana likely reflects an expansion of the crossover-available euchromatin caused by a difference in the strength of the centromere effect. The crossover pattern in D. mauritiana conflicts with the commonly accepted view of centromeres as strong polar suppressors of exchange (whose intensity is buffered by sequence nonspecific heterochromatin) and demonstrates the importance of expanding such studies into other species of Drosophila.more » « less
- 
            The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex ( D. simulans , D. mauritiana , and D. sechellia ), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence—twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
