We present a spectroscopic and photometric analysis of a sample of 416,288 galaxies from the Sloan Digital Sky Survey (SDSS) matched to mid-infrared (mid-IR) data from the Wide-field Infrared Survey Explorer (WISE). By using a new spectroscopic fitting package, GELATO (Galaxy/AGN Emission Line Analysis TOol), we are able to retrieve emission line fluxes and uncertainties for SDSS spectra and robustly determine the presence of broad lines and outflowing components, enabling us to investigate WISE color space as a function of optical spectroscopic properties. In addition, we pursue spectral energy distribution template fitting to assess the relative active galactic nucleus (AGN) contribution and nuclear obscuration to compare to existing mid-IR selection criteria with WISE. We present a selection criterion in mid-IR color space to select AGNs with an ∼80% accuracy and a completeness of ∼16%. This is the first mid-IR color selection defined by solely using the distribution of Type I and Type II optical spectroscopic AGNs in WISE mid-IR color space. Our selection is an improvement of ∼50% in the completeness of targeting spectroscopic AGNs with WISE down to an SDSS
We present the result of a spectroscopic campaign targeting active galactic nucleus (AGN) candidates selected using a novel unsupervised machine-learning (ML) algorithm trained on optical and mid-infrared photometry. AGN candidates are chosen without incorporating prior AGN selection criteria and are fainter, redder, and more numerous, ∼340 AGN deg−2, than comparable photometric and spectroscopic samples. In this work, we obtain 178 rest-optical spectra from two candidate ML-identified AGN classes with the Hectospec spectrograph on the MMT Observatory. We find that our first ML-identified group is dominated by Type I AGNs (85%) with a <3% contamination rate from non-AGNs. Our second ML-identified group is mostly comprised of Type II AGNs (65%), with a moderate contamination rate of 15% primarily from star-forming galaxies. Our spectroscopic analyses suggest that the classes recover more obscured AGNs, confirming that ML techniques are effective at recovering large populations of AGNs at high levels of extinction. We demonstrate the efficacy of pairing existing WISE data with large-area and deep optical/near-infrared photometric surveys to select large populations of AGNs and recover obscured growth of supermassive black holes. This approach is well suited to upcoming photometric surveys, such as Euclid, Rubin, and Roman.
more » « less- PAR ID:
- 10496071
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 167
- Issue:
- 4
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 169
- Size(s):
- Article No. 169
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract r < 17.77 mag. In addition, our new criterion targets a less-luminous population of AGNs, with on average lower [Oiii ] luminosities by ∼30% ( > 0.1 dex) compared to typical WISE color–color selections. With upcoming large photometric surveys without corresponding spectroscopy, our method presents a way to select larger populations of AGNs at lower AGN luminosities and higher nuclear obscuration levels than traditional mid-IR color selections. -
Abstract We present a large sample of infrared-luminous candidate active galactic nuclei (AGNs) that lack X-ray detections in Chandra, XMM-Newton, and NuSTAR fields. We selected all optically detected SDSS sources with redshift measurements, combined additional broadband photometry from WISE, UKIDSS, 2MASS, and GALEX, and modeled the spectral energy distributions (SEDs) of our sample sources. We parameterize nuclear obscuration in our SEDs with and uncover thousands of powerful obscured AGNs that lack X-ray counterparts, many of which are identified as AGN candidates based on straightforward WISE photometric criteria. Using the observed luminosity correlation between rest-frame 2–10 keV ( ) and rest-frame AGN ( ), we estimate the intrinsic X-ray luminosities of our sample sources and combine these data with flux limits from X-ray catalogs to determine lower limits on nuclear obscuration. Using the ratio of intrinsic-to-observed X-ray luminosity ( ), we find a significant fraction of sources with column densities approaching cm –2 , suggesting that multiwavelength observations are necessary to account for the population of heavily obscured AGNs. We simulate the underlying distribution for the X-ray non-detected sources in our sample through survival analysis, and confirm the presence of AGN activity via X-ray stacking. Our results point to a considerable population of extremely obscured AGNs undetected by current X-ray observatories.more » « less
-
ABSTRACT The scarce optical variability studies in spectrally classified Type 2 active galactic nuclei (AGNs) have led to the discovery of anomalous objects that are incompatible with the simplest unified models (UMs). This paper focuses on the exploration of different variability features that allow to distinguish between obscured, Type 2 AGNs and the variable, unobscured Type 1s. We analyse systematically the Zwicky Transient Facility, 2.5-yr-long light curves of ∼15 000 AGNs from the Sloan Digital Sky Survey Data Release 16, which are generally considered Type 2s due to the absence of strong broad emission lines (BELs). Consistent with the expectations from the UM, the variability features are distributed differently for distinct populations, with spectrally classified weak Type 1s showing one order of magnitude larger variances than the Type 2s. We find that the parameters given by the damped random walk model lead to broader H α equivalent width for objects with τg > 16 d and long-term structure function SF∞, g > 0.07 mag. By limiting the variability features, we find that ∼11 per cent of Type 2 sources show evidence for optical variations. A detailed spectral analysis of the most variable sources (∼1 per cent of the Type 2 sample) leads to the discovery of misclassified Type 1s with weak BELs and changing-state candidates. This work presents one of the largest systematic investigations of Type 2 AGN optical variability to date, in preparation for future large photometric surveys.
-
Abstract We present rest-frame optical spectra from Keck/MOSFIRE and Keck/NIRES of 16 candidate ultramassive galaxies targeted as part of the Massive Ancient Galaxies at
z > 3 Near-Infrared Survey (MAGAZ3NE). These candidates were selected to have photometric redshifts 3 ≲z phot<4, photometric stellar masses > 11.7, and well-sampled photometric spectral energy distributions (SEDs) from the UltraVISTA and VIDEO surveys. In contrast to previous spectroscopic observations of blue star-forming and poststarburst ultramassive galaxies, candidates in this sample have very red SEDs implying significant dust attenuation, old stellar ages, and/or active galactic nuclei (AGN). Of these galaxies, eight are revealed to be heavily dust-obscured 2.0 <z < 2.7 galaxies with strong emission lines, some showing broad features indicative of AGN, three are Type I AGN hosts atz > 3, one is az ∼ 1.2 dusty galaxy, and four galaxies do not have a confirmed spectroscopic redshift. In fact, none of the sample has ∣z spec−z phot∣ < 0.5, suggesting difficulties for photometric redshift programs in fitting similarly red SEDs. The prevalence of these red interloper galaxies suggests that the number densities of high-mass galaxies are overestimated atz ≳ 3 in large photometric surveys, helping to resolve the “impossibly early galaxy problem” and leading to much better agreement with cosmological galaxy simulations. A more complete spectroscopic survey of ultramassive galaxies is required to pin down the uncertainties on their number densities in the early Universe. -
ABSTRACT We present second epoch optical spectra for 30 changing-look (CL) candidates found by searching for Type-1 optical variability in a sample of active galactic nuclei (AGNs) spectroscopically classified as Type 2. We use a random-forest-based light-curve classifier and spectroscopic follow-up, confirming 50 per cent of candidates as turning-on CLs. In order to improve this selection method and to better understand the nature of the not-confirmed CL candidates, we perform a multiwavelength variability analysis including optical, mid-infrared (MIR), and X-ray data, and compare the results from the confirmed and not-confirmed CLs identified in this work. We find that most of the not-confirmed CLs are consistent with weak Type 1s dominated by host-galaxy contributions, showing weaker optical and MIR variability. On the contrary, the confirmed CLs present stronger optical fluctuations and experience a long (from five to ten years) increase in their MIR fluxes and the colour W1–W2 over time. In the 0.2–2.3 keV band, at least four out of 11 CLs with available SRG/eROSITA detections have increased their flux in comparison with archival upper limits. These common features allow us to select the most promising CLs from our list of candidates, leading to nine sources with similar multiwavelength photometric properties to our CL sample. The use of machine learning algorithms with optical and MIR light curves will be very useful to identify CLs in future large-scale surveys.