skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational Reverse Engineering Analysis of the Scattering Experiment Method for Interpretation of 2D Small-Angle Scattering Profiles (CREASE-2D)
Award ID(s):
2105744
PAR ID:
10496234
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
JACS Au
Volume:
4
Issue:
4
ISSN:
2691-3704
Format(s):
Medium: X Size: p. 1570-1582
Size(s):
p. 1570-1582
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. The frequency domain perfectly matched layer (FDPML) approach is used to study phonon transport in a series of large 2D domains with randomly embedded nanoparticles over a wide range of nanoparticle loadings and wavelengths. The effect of nanoparticle packing density on the mean free path and localization length is characterized. We observe that, in the Mie scattering regime, the independent scattering approximation is valid up to volume fractions exceeding 10% and often higher depending on scattering parameter, indicating that the mean free path can usually be calculated much less expensively using the number density and the scattering cross section of a single scatterer. We also study localization lengths and their dependence on particle loading. For heavy nanoparticles embedded in a lighter material, using the FDPML approach, we only observe localization at volume fractions [Formula: see text] and only for short wavelength modes where vibrational frequencies exceed those available in the embedded nanoparticles. Using modal analysis, we show that localization in nanoparticle laden materials is primarily due to energetic confinement rather than Anderson localization. We then show that, by using light particles in a heavy matrix, the fraction of confined modes can be substantially increased. 
    more » « less
  3. Correlated-electron systems have long been an important platform for various interesting phenomena and fundamental questions in condensed matter physics. As a pivotal process in these systems, d-d transitions have been suggested as a key factor toward realizing optical spin control in two-dimensional (2D) magnets. However, it remains unclear how d-d excitations behave in quasi-2D systems with strong electronic correlation and spin-charge coupling. Here, we present a systematic electronic Raman spectroscopy investigation on d-d transitions in a 2D antiferromagnet—NiPS 3 , from bulk to atomically thin samples. Two electronic Raman modes originating from the scattering of incident photons with d electrons in Ni 2+ ions are observed at ~1.0 eV. This electronic process persists down to trilayer flakes and exhibits insensitivity to the spin ordering of NiPS 3 . Our study demonstrates the utility of electronic Raman scattering in investigating the unique electronic structure and its coupling to magnetism in correlated 2D magnets. 
    more » « less