skip to main content


Title: Wave Generation by Flare-accelerated Ions and Implications for 3 He Acceleration
Abstract

The waves generated by high-energy proton and alpha particles streaming from solar flares into regions of colder plasma are explored using particle-in-cell simulations. Initial distribution functions for the protons and alphas consist of two populations: an energetic, streaming population represented by an anisotropic (T>T), one-sided kappa function and a cold, Maxwellian background population. The anisotropies and nonzero heat fluxes of these distributions destabilize oblique waves with a range of frequencies below the proton cyclotron frequency. These waves scatter particles out of the tails of the initial distributions along constant-energy surfaces in the wave frame. Overlap of the nonlinear resonance widths allows particles to scatter into near-isotropic distributions by the end of the simulations. The dynamics of3He are explored using test particles. Their temperatures can increase by a factor of nearly 20. Propagation of such waves into regions above and below the flare site can lead to heating and transport of3He into the flare acceleration region. The amount of heated3He that will be driven into the flare site is proportional to the wave energy. Using values from our simulations, we show that the abundance of3He driven into the acceleration region should approach that of4He in the corona. Therefore, waves driven by energetic ions produced in flares are a strong candidate to drive the enhancements of3He observed in impulsive flares.

 
more » « less
NSF-PAR ID:
10496244
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
964
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 97
Size(s):
["Article No. 97"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum withT≈ 104K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log10column mass/[g cm−2] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy aboveE≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperaturesT≳ 12,000 K over the deep chromosphere with log10column mass/[g cm−2] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares.

     
    more » « less
  2. Abstract

    The sustained gamma-ray emission (SGRE) from the Sun is a prolonged enhancement of >100 MeV gamma-ray emission that extends beyond the flare impulsive phase. The origin of the >300 MeV protons resulting in SGRE is debated, with both flares and shocks driven by coronal mass ejections (CMEs) being the suggested sites of proton acceleration. We compared the near-Sun acceleration and space speed of CMEs with “Prompt” and “Delayed” (SGRE) gamma-ray components. We found that “Delayed”-component-associated CMEs have higher initial accelerations and space speeds than “Prompt Only”-component-associated CMEs. We selected halo CMEs (HCMEs) associated with type II radio bursts (shock-driving HCMEs) and compared the average acceleration and space speed between HCME populations with or without SGRE events, major solar energetic particle (SEP) events, metric, or decameter-hectometric (DH) type II radio bursts. We found that the SGRE-producing HCMEs associated with a DH type II radio burst and/or a major SEP event have higher space speeds and especially initial accelerations than those without an SGRE event. We estimated the radial distances and speeds of the CME-driven shocks at the end time of the 2012 January 23 and March 7 SGRE events using white-light images of STEREO Heliospheric Imagers and radio dynamic spectra of Wind WAVES. The shocks were at the radial distances of 0.6–0.8 au and their speeds were high enough (≈975 km s−1and ≈750 km s−1, respectively) for high-energy particle acceleration. Therefore, we conclude that our findings support the CME-driven shock as the source of >300 MeV protons.

     
    more » « less
  3. Abstract

    Electromagnetic ion cyclotron (EMIC) waves have long been considered to be a significant loss mechanism for relativistic electrons. This has most often been attributed to resonant interactions with the highest amplitude waves. But recent observations have suggested that the dominant energy of electrons precipitated to the atmosphere may often be relatively low, less than 1 MeV, whereas the minimum resonant energy of the highest amplitude waves is often greater than 2 MeV. Here we use relativistic electron test particle simulations in the wavefields of a hybrid code simulation of EMIC waves in dipole geometry in order to show that significant pitch angle scattering can occur due to interaction with low‐amplitude short‐wavelength EMIC waves. In the case we examined, these waves are in the H band (at frequencies above the He+gyrofrequency), even though the highest amplitude waves were in the He band frequency range (below the He+gyrofrequency). We also present wave power distributions for 29 EMIC simulations in straight magnetic field line geometry that show that the high wave number portion of the spectrum is in every case mostly due to the H band waves. Though He band waves are often associated with relativistic electron precipitation, it is possible that the He band waves do not directly scatter the sub‐megaelectron volts (sub‐MeV) electrons, but that the presence of He band waves is associated with high plasma density which lowers the minimum resonant energy so that these electrons can more easily resonate with the H band waves.

     
    more » « less
  4. Abstract

    We conduct two-dimensional particle-in-cell simulations to investigate the scattering of electron heat flux by self-generated oblique electromagnetic waves. The heat flux is modeled as a bi-kappa distribution with aT>Ttemperature anisotropy maintained by continuous injection at the boundaries. The anisotropic distribution excites oblique whistler waves and filamentary-like Weibel instabilities. Electron velocity distributions taken after the system has reached a steady state show that these instabilities inhibit the heat flux and drive the total distributions toward isotropy. Electron trajectories in velocity space show a circular-like diffusion along constant energy surfaces in the wave frame. The key parameter controlling the scattering rate is the average speed, or drift speedvd, of the heat flux compared with the electron Alfvén speedvAe, with higher drift speeds producing stronger fluctuations and a more significant reduction of the heat flux. Reducing the density of the electrons carrying the heat flux by 50% does not significantly affect the scattering rate. A scaling law for the electron scattering rate versusvd/vAeis deduced from the simulations. The implications of these results for understanding energetic electron transport during energy release in solar flares are discussed.

     
    more » « less
  5. Abstract

    This paper presents a stochastic three-dimensional focused transport simulation of solar energetic particles (SEPs) produced by a data-driven coronal mass ejection (CME) shock propagating through a data-driven model of coronal and heliospheric magnetic fields. The injection of SEPs at the CME shock is treated using diffusive shock acceleration of post-shock suprathermal solar wind ions. A time-backward stochastic simulation is employed to solve the transport equation to obtain the SEP time–intensity profile at any location, energy, and pitch angle. The model is applied to a SEP event on 2020 May 29, observed by STEREO-A close to ∼1 au and by Parker Solar Probe (PSP) when it was about 0.33 au away from the Sun. The SEP event was associated with a very slow CME with a plane-of-sky speed of 337 km s−1at a height below 6RSas reported in the SOHO/LASCO CME catalog. We compute the time profiles of particle flux at PSP and STEREO-A locations, and estimate both the spectral index of the proton energy spectrum for energies between ∼2 and 16 MeV and the equivalent path length of the magnetic field lines experienced by the first arriving SEPs. We find that the simulation results are well correlated with observations. The SEP event could be explained by the acceleration of particles by a weak CME shock in the low solar corona that is not magnetically connected to the observers.

     
    more » « less