A sliding electrolyte metal‐air microbattery driven by natural eye blinking motion is demonstrated as a source of electrical energy that can be integrated with smart contact lens platforms. The metal‐air battery (footprint 10 mm2) consists of a Mg anode and a Pt cathode, patterned on an insulating substrate and the battery electrolyte is a film of eye‐tear fluid that is periodically dragged on top of the electrodes during the natural eye‐blinking cycle, which activates the battery. When tested with an eye emulator, the open‐circuit voltage across the eye‐tear activated metal‐air battery (ETMAB) is 2.2 V. Impedance matching analysis reveals a maximum battery‐specific capacity of 3561 mAh g–1obtained at a discharge current density of 5 mA cm–2. The blinking activated battery exhibits the maximum generated power density of 1.3 mW cm–2at the load of 740 Ω. The blinking ETMAB delivers eight times higher energy output and more than three times longer lifetime than achievable with static ETMAB designs.
On‐the‐eye microsystems such as smart contacts for vision correction, health monitoring, drug delivery, and displaying information represent a new emerging class of low‐profile (≤ 1 mm) wireless microsystems that conform to the curvature of the eyeball surface. The implementation of suitable low‐profile power sources for eye‐based microsystems on curved substrates is a major technical challenge addressed in this paper. The fabrication and characterization of a hybrid energy generation unit composed of a flexible silicon solar cell and eye‐blinking activated Mg–O2metal–air harvester capable of sustainably supplying electrical power to smart ocular devices are reported. The encapsulated photovoltaic device provides a DC output with a power density of 42.4 µW cm−2and 2.5 mW cm−2under indoor and outdoor lighting conditions, respectively. The eye‐blinking activated Mg–air harvester delivers pulsed power output with a maximum power density of 1.3 mW cm−2. A power management circuit with an integrated 11 mF supercapacitor is used to convert the harvesters’ pulsed voltages to DC, boost up the voltages, and continuously deliver ≈150 µW at a stable 3.3 V DC output. Uniquely, in contrast to wireless power transfer, the power pack continuously generates electric power and does not require any type of external accessories for operation.
more » « less- Award ID(s):
- 1932602
- NSF-PAR ID:
- 10496247
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 20
- Issue:
- 32
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Here, a novel design of a mechanical energy harvester combining peak power output competitive with state‐of‐the‐art energy harvester devices is reported, but with a design enabling full transience, or dissolution, of the harvester after 30 min upon triggering in basic water. The harvester incorporates a symmetric cell combining Li
x Al alloy electrodes and polyvinyl alcohol packaging that harvests mechanical energy due to the mechanical–electrochemical stress coupling between the electrodes. Prototype harvester devices demonstrate peak output power of 0.208 µW cm−2with continuous energy generation up to 1.76 µJ cm−2at a mechanical input frequency of 0.1 Hz. This work introduces a new class of power systems simultaneously tailored for transience, high‐performance energy harvesting, and operation frequency relevant to wearable technologies. -
This paper presents the design and measurement results of wireless power transfer through soil over a range of soil moisture levels for future low-cost, wireless, battery-less, and in-situ soil health monitoring technologies. A pair of packaged 6 cm-diameter coils can wirelessly transfer 0.56 mW from an external RF power source of 37 mW through a soil depth of 15 cm over a typical moisture level ranging from low 30% to 40%. An optimal frequency of 1.4 MHz and 1 MHz was chosen for an efficient operation in loamy soil and sandy soil, respectively. The demonstrated power transfer is sufficient to energize underground soil health monitoring devices. In addition, a pair of packaged 12 cm-diameter coils, taking the loss contributed by the surrounding soil into design consideration, can achieve a 130 µW power delivery with an efficiency of approximately 8% over a 30 cm air gap. It is expected that a similar performance can be achieved through a 30 cm soil depth.more » « less
-
null (Ed.)We report the design, fabrication, and experimental characterization of a chip-sized electromechanical micro-receiver for low-frequency, near-field wireless power transmission that employs both electrodynamic and piezoelectric transductions to achieve a high power density and high output voltage while maintaining a low profile. The 0.09 cm 3 device comprises a laser-micro-machined titanium suspension, one NdFeB magnet, two PZT-5A piezo-ceramic patches, and a precision-manufactured micro-coil with a thickness of only 1.65 mm. The device generates 520 μW average power (5.5 mW•cm -3 ) at 4 cm distance from a transmitter coil operating at 734.6 Hz and within safe human exposure limits. Compared to a previously reported piezoelectric-only prototype, this device generates ~2.5x higher power and offers 18% increased normalized power density (6.5 mW•cm -3 •mT -2 ) for potential improvement in wirelessly charging wearables and bio-implants.more » « less
-
Abstract Accurate and continuous monitoring of eye movements using compact, low‐power‐consuming, and easily‐wearable sensors is necessary in personal and public health and safety, selected medical diagnosis techniques (point‐of‐care diagnostics), and personal entertainment systems. In this study, a highly sensitive, noninvasive, and skin‐attachable sensor made of a stable flexible piezoelectric thin film that is also free of hazardous elements to overcome the limitations of current computer‐vision‐based eye‐tracking systems and piezoelectric strain sensors is developed. The sensor fabricated from single‐crystalline III‐N thin film by a layer‐transfer technique is highly sensitive and can detect subtle movements of the eye. The flexible eye movement sensor converts the mechanical deformation (skin deflection by eye blinking and eyeball motion) with various frequencies and levels into electrical outputs. The sensor can detect abnormal eye flickering and conditions caused by fatigue and drowsiness, including overlong closure, hasty eye blinking, and half‐closed eyes. The abnormal eyeball motions, which may be the sign of several brain‐related diseases, can also be measured, as the sensor generates discernable output voltages from the direction of eyeball movements. This study provides a practical solution for continuous sensing of human eye blinking and eyeball motion as a critical part of personal healthcare, safety, and entertainment systems.