skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wound‐triggered shape change microgels for the development of enhanced biomimetic function platelet‐like particles
Abstract Platelets play a pivotal role in hemostasis and wound healing and conditional shape change is an important component of platelet functionality. In normal circumstances, platelets travel through the circulatory system in an inactive rounded state, which enables platelets to easily move to vessel walls for attachment. When an injury occurs, platelets are prompted by molecules, such as thrombin, to shift into a stellate shape and increase exposure of fibrin‐binding receptors. When active, platelets promote hemostasis and clot retraction, which enhances clot stability and promotes healing. However, in conditions where platelets are depleted or hyporeactive, these functions are diminished and lead to inhibited hemostasis and healing. To treat platelet depletion, our group developed platelet‐like particles (PLPs) which consist of highly deformable microgels coupled to fibrin binding motif. However, first generation PLPs do not exhibit wound‐triggered shape change like native platelets. Thus, the objective of these studies was to develop a PLP formulation that changes shape when prompted by thrombin. To create thrombin‐sensitive PLPs (TS‐PLPs), we incorporated a thrombin‐cleavable peptide into the microgel body and then evaluated PLP properties before and after exposure to thrombin including morphology, size, and in vitro clot retraction. Once thrombin‐prompted shape change ability was confirmed, the TS‐PLPs were tested in vivo for hemostatic ability and subsequent wound healing outcomes in a murine liver trauma model. We found that TS‐PLPs exhibit a wound‐triggered shape change, induce significant clot retraction following exposure to thrombin and promote hemostasis and healing in vivo after trauma.  more » « less
Award ID(s):
1847488
PAR ID:
10496328
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
Volume:
112
Issue:
4
ISSN:
1549-3296
Page Range / eLocation ID:
613 to 624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Platelets crucially facilitate wound healing but can become depleted in traumatic injury or chronic wounds. Previously, our group developed injectable platelet‐like particles (PLPs) comprised of highly deformable, ultralow crosslinked pNIPAm microgels (ULCs) coupled to fibrin binding antibodies to treat post‐trauma bleeding. PLP fibrin‐binding facilitates homing to sites of injury, promotes clot formation, and, due to high particle deformability, induces clot retraction. Clot retraction augments healing by increasing clot stability, enhancing clot stiffness, and promoting cell migration into the wound bed. Because post‐traumatic healing is often complicated by infection, the objective of these studies was to develop antimicrobial nanosilver microgel composite PLPs to augment hemostasis, fight infection, and promote healing post‐trauma. A key goal was to maintain particle deformability following silver incorporation to preserve PLP‐mediated clot retraction. Clot retraction, antimicrobial activity, hemostasis after trauma, and healing after injury were evaluated via confocal microscopy, colony‐forming unit assays, a murine liver trauma model, and a murine full‐thickness injury model in the absence or presence of infection, respectively. We found that nanosilver incorporation does not affect base PLP performance while bestowing significant antimicrobial activity and enhancing infected wound healing outcomes. Therefore, Ag‐PLPs have great promise for treating hemorrhage and improving healing following trauma. 
    more » « less
  2. Uncontrolled bleeding after trauma represents a substantial clinical problem. The current standard of care to treat bleeding after trauma is transfusion of blood products including platelets; however, donated platelets have a short shelf life, are in limited supply, and carry immunogenicity and contamination risks. Consequently, there is a critical need to develop hemostatic platelet alternatives. To this end, we developed synthetic platelet-like particles (PLPs), formulated by functionalizing highly deformable microgel particles composed of ultralow cross-linked poly (N-isopropylacrylamide) with fibrin-binding ligands. The fibrin-binding ligand was designed to target to wound sites, and the cross-linking of fibrin polymers was designed to enhance clot formation. The ultralow cross-linking of the microgels allows the particles to undergo large shape changes that mimic platelet shape change after activation; when coupled to fibrin-binding ligands, this shape change facilitates clot retraction, which in turn can enhance clot stability and contribute to healing. Given these features, we hypothesized that synthetic PLPs could enhance clotting in trauma models and promote healing after clotting. We first assessed PLP activity in vitro and found that PLPs selectively bound fibrin and enhanced clot formation. In murine and porcine models of traumatic injury, PLPs reduced bleeding and facilitated healing of injured tissue in both prophylactic and immediate treatment settings. We determined through biodistribution experiments that PLPs were renally cleared, possibly enabled by ultrasoft particle properties. The performance of synthetic PLPs in the preclinical studies shown here supports future translational investigation of these hemostatic therapeutics in a trauma setting. 
    more » « less
  3. Abstract Native platelets are crucial players in wound healing. Key to their role is the ability of their surface receptor GPIIb/IIIa to bind fibrin at injury sites, thereby promoting clotting. When platelet activity is impaired as a result of traumatic injury or certain diseases, uncontrolled bleeding can result. To aid clotting and tissue repair in cases of poor platelet activity, synthetic platelet‐like particles capable of promoting clotting and improving wound healing responses have been previously developed in the lab. These are constructed by functionalizing highly deformable hydrogel microparticles (microgels) with fibrin‐binding ligands including a fibrin‐specific whole antibody or a single‐domain variable fragment. To improve the translational potential of these clotting materials, the use of fibrin‐binding peptides as cost‐effective, robust, high‐specificity alternatives to antibodies are explored. Herein, the development and characterization of soft microgels decorated with the peptide AHRPYAAK that mimics fibrin knob “B” and targets fibrin hole “b” are presented. These “fibrin‐affine microgels with clotting yield” (FAMCY) are found to significantly increase clot density in vitro and decrease bleeding in a rodent trauma model in vivo. These results indicate that FAMCYs are capable of recapitulating the platelet‐mimetic properties of previous designs while utilizing a less costly, more translational design. 
    more » « less
  4. Micro/nanoplastics, whether manufactured or resulting from environmental degradation, can enter the body through ingestion, inhalation, or dermal pathways. Previous research has found that nanoplastics with diameters of ≤100 nm can translocate into the circulatory system in a dose-dependent manner and potentially impact thrombosis and hemostasis. To investigate the direct effects of microplastics on fibrin clot formation, a simplified ex vivo human thrombin/fibrinogen clot model was utilized. The 100 nm polystyrene particles (non-functionalized [nPS] and aminated [aPS]) were preincubated (0–200 µg/mL) with either thrombin or fibrinogen, and fibrin clot formation was characterized via turbidity and thromboelastography (TEG). When the particles were preincubated with fibrinogen, little effect was observed for aPS or nPS on turbidity or TEG up through 100 µg/mL. TEG results demonstrated a significant impact on clot formation rate and strength, in the case of nPS preincubated with thrombin exhibiting a significant dose-dependent inhibitory effect. In conclusion, the presence of microplastics can have inhibitory effects on fibrin clot formation that are dependent upon both particle surface charge and concentration. Negatively charged nPS exhibited the most significant impacts to clot strength, turbidity, and rate of fibrin formation when first incubated with thrombin, with its impact being greatly diminished when preincubated with fibrinogen in this simplified fibrin clot model. 
    more » « less
  5. ABSTRACT Musculoskeletal knee injuries are common and debilitating, with the most prevalent soft tissue injuries being anterior cruciate ligament (ACL) and meniscal tears. These tears do not heal well naturally, and biological therapies involving scaffolds are often unsuccessful, due in part to the synovial fluid environment of the joint. Viscous synovial fluid contains high concentrations of degradative enzymes, including plasmin, which prevents the stable formation of provisional fibrin scaffolds. Lack of provisional scaffold formation prevents bridging of torn tissue and subsequent remodeling for permanent tissue repair. Coagulation factors such as fibrinogen and thrombin, reinforced with synthetic platelet‐like particles (PLPs), can be introduced to synovial fluid to promote fibrin scaffold formation. PLPs bind to and retract fibrin fibers to enhance stiffness, density, and stability of fibrin scaffolds. Therefore, the objective of this work is to investigate the role of PLPs in enhancing fibrin scaffold formation and degradation capabilities within synovial fluid and to characterize the resulting scaffold structure, density, and mechanics. We investigated effects in synovial fluid with high or low viscosity, as viscosity can change with injury and can vary between individuals. Following the addition of clotting factors and PLPs to synovial fluid, we found an increase in fibrin scaffold density, structure, and maximum mechanics for low viscosity, but not high viscosity, synovial fluid groups. Furthermore, by lowering the viscosity of synovial fluid with hyaluronidase, the increase in scaffold density following PLP addition was restored, indicating the strong role of synovial fluid viscosity on stable scaffold formation. This technology contributes to the development of a more robust fibrin‐based therapy for intra‐articular musculoskeletal injuries. 
    more » « less