skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Runtime Verification of Crypto APIs: An Empirical Study
Cryptographic (crypto) API misuses often cause security vulnerabilities, so static and dynamic analyzers were recently proposed to detect such misuses. These analyzers differ in strengths and weaknesses, and they can miss bugs. Motivated by the inherent limitations of existing analyzers, we study runtime verification (RV) as an alternative for crypto API misuse detection. RV monitors program runs against formal specifications and was shown to be effective and efficient for amplifying the bug-finding ability of software tests. We focus on the popular JCA crypto API and write 22 RV specifications based on expert-validated rules in a static analyzer. We monitor these specifications while running tests in five benchmarks. Lastly, we compare the accuracy of our RV-based approach, RVSec, with those of three state-of-the-art crypto API misuses detectors: CogniCrypt, CryptoGuard, and CryLogger. RVSec has higher accuracy in four benchmarks and is on par with CryptoGuard in the fifth. Overall, RVSec achieves an average F1 measure of 95%, compared with 83%, 78%, and 86% for CogniCrypt, CryptoGuard, and CryLogger, respectively. We show that RV is effective for detecting crypto API misuses and highlight the strengths and limitations of these tools. We also discuss how static and dynamic analysis can complement each other for detecting crypto API misuses.  more » « less
Award ID(s):
2045596
PAR ID:
10496348
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Software Engineering
Volume:
49
Issue:
10
ISSN:
0098-5589
Page Range / eLocation ID:
4510 to 4525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cryptographic (crypto) algorithms are the essential ingredients of all secure systems: crypto hash functions and encryption algorithms, for example, can guarantee properties such as integrity and confidentiality. Developers, however, can misuse the application programming interfaces (API) of such algorithms by using constant keys and weak passwords. This paper presents CRYLOGGER, the first open-source tool to detect crypto misuses dynamically. CRYLOGGER logs the parameters that are passed to the crypto APIs during the execution and checks their legitimacy offline by using a list of crypto rules. We compare CRYLOGGER with CryptoGuard, one of the most effective static tools to detect crypto misuses. We show that our tool complements the results of CryptoGuard, making the case for combining static and dynamic approaches. We analyze 1780 popular Android apps downloaded from the Google Play Store to show that CRYLOGGER can detect crypto misuses on thousands of apps dynamically and automatically. We reverse-engineer 28 Android apps and confirm the issues flagged by CRYLOGGER. We also disclose the most critical vulnerabilities to app developers and collect their feedback. 
    more » « less
  2. null (Ed.)
    API misuses are prevalent and extremely harmful. Despite various techniques have been proposed for API-misuse detection, it is not even clear how different types of API misuses distribute and whether existing techniques have covered all major types of API misuses. Therefore, in this paper, we conduct the first large-scale empirical study on API misuses based on 528,546 historical bug-fixing commits from GitHub (from 2011 to 2018). By leveraging a state-of-the-art fine-grained AST differencing tool, GumTree, we extract more than one million bug-fixing edit operations, 51.7% of which are API misuses. We further systematically classify API misuses into nine different categories according to the edit operations and context. We also extract various frequent API-misuse patterns based on the categories and corresponding operations, which can be complementary to existing API-misuse detection tools. Our study reveals various practical guidelines regarding the importance of different types of API misuses. Furthermore, based on our dataset, we perform a user study to manually analyze the usage constraints of 10 patterns to explore whether the mined patterns can guide the design of future API-misuse detection tools. Specifically, we find that 7,541 potential misuses still exist in latest Apache projects and 149 of them have been reported to developers. To date, 57 have already been confirmed and fixed (with 15 rejected misuses correspondingly). The results indicate the importance of studying historical API misuses and the promising future of employing our mined patterns for detecting unknown API misuses. 
    more » « less
  3. Extensive research has been conducted to explore cryptographic API misuse in Java. However, despite the tremendous popularity of the Python language, uncovering similar issues has not been fully explored. The current static code analysis tools for Python are unable to scan the increasing complexity of the source code. This limitation decreases the analysis depth, resulting in more undetected cryptographic misuses. In this research, we propose Cryptolation, a Static Code Analysis (SCA) tool that provides security guarantees for complex Python cryptographic code. Most existing analysis tools for Python solely focus on specific Frameworks such as Django or Flask. However, using a SCA approach, Cryptolation focuses on the language and not any framework. Cryptolation performs an inter-procedural data-flow analysis to handle many Python language features through variable inference (statically predicting what the variable value is) and SCA. Cryptolation covers 59 Python cryptographic modules and can identify 18 potential cryptographic misuses that involve complex language features. In this paper, we also provide a comprehensive analysis and a state-of-the-art benchmark for understanding the Python cryptographic Application Program Interface (API) misuses and their detection. Our state-of-the-art benchmark PyCryptoBench includes 1,836 Python cryptographic test cases that cover both 18 cryptographic rules and five language features. PyCryptoBench also provides a framework for evaluating and comparing different cryptographic scanners for Python. To evaluate the performance of our proposed cryptographic Python scanner, we evaluated Cryptolation against three other state-of-the-art tools: Bandit, Semgrep, and Dlint. We evaluated these four tools using our benchmark PyCryptoBench and manual evaluation of (four Top-Ranked and 939 Un-Ranked) real-world projects. Our results reveal that, overall, Cryptolation achieved the highest precision throughout our testing; and the highest accuracy on our benchmark. Cryptolation had 100% precision on PyCryptoBench, and the highest precision on real-world projects. 
    more » « less
  4. Confidential computing aims to secure the code and data in use by providing a Trusted Execution Environment (TEE) for applications using hardware features such as Intel SGX.Timing and cache side-channel attacks, however, are often outside the scope of the threat model, although once exploited they are able to break all the default security guarantees enforced by hardware. Unfortunately, tools detecting potential side-channel vulnerabilities within applications are limited and usually ignore the strong attack model and the unique programming model imposed by Intel SGX. This paper proposes a precise side-channel analysis tool, ENCIDER, detecting both timing and cache side-channel vulnerabilities within SGX applications via inferring potential timing observation points and incorporating the SGX programming model into analysis. ENCIDER uses dynamic symbolic execution to decompose the side-channel requirement based on the bounded non-interference property and implements byte-level information flow tracking via API modeling. We have applied ENCIDER to 4 real-world SGX applications, 2 SGX crypto libraries, and 3 widely-used crypto libraries, and found 29 timing side channels and 73 code and data cache side channels. We have reported our findings to the corresponding parties, e.g., Intel and ARM, who have confirmed most of the vulnerabilities detected. 
    more » « less
  5. Modern web services rely heavily on REST APIs, typically documented using the OpenAPI specification. The widespread adoption of this standard has resulted in the development of many black-box testing tools that generate tests based on OpenAPI specifications. Although Large Language Models (LLMs) have shown promising test-generation abilities, their application to REST API testing remains mostly unexplored. We present LlamaRestTest, a novel approach that employs two custom LLMs-created by fine-tuning and quantizing the Llama3-8B model using mined datasets of REST API example values and inter-parameter dependencies-to generate realistic test inputs and uncover inter-parameter dependencies during the testing process by analyzing server responses. We evaluated LlamaRestTest on 12 real-world services (including popular services such as Spotify), comparing it against RESTGPT, a GPT-powered specification-enhancement tool, as well as several state-of-the-art REST API testing tools, including RESTler, MoRest, EvoMaster, and ARAT-RL. Our results demonstrate that fine-tuning enables smaller models to outperform much larger models in detecting actionable parameter-dependency rules and generating valid inputs for REST API testing. We also evaluated different tool configurations, ranging from the base Llama3-8B model to fine-tuned versions, and explored multiple quantization techniques, including 2-bit, 4-bit, and 8-bit integer formats. Our study shows that small language models can perform as well as, or better than, large language models in REST API testing, balancing effectiveness and efficiency. Furthermore, LlamaRestTest outperforms state-of-the-art REST API testing tools in code coverage achieved and internal server errors identified, even when those tools use RESTGPT-enhanced specifications. Finally, through an ablation study, we show that each component of LlamaRestTest contributes to its overall performance. 
    more » « less