- Award ID(s):
- 1650474
- PAR ID:
- 10496384
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Int. Conf. on Image Processing (ICIP’23)
- ISBN:
- 978-1-7281-9835-4
- Page Range / eLocation ID:
- 1940 to 1944
- Format(s):
- Medium: X
- Location:
- Kuala Lumpur, Malaysia
- Sponsoring Org:
- National Science Foundation
More Like this
-
Although face recognition (FR) has achieved great success in recent years, it is still challenging to accurately recognize faces in low-quality images due to the obscured facial details. Nevertheless, it is often feasible to make predictions about specific soft biometric (SB) attributes, such as gender, age, and baldness even in dealing with low-quality images. In this paper, we propose a novel multi-branch neural network that leverages SB attribute information to boost the performance of FR. To this ed, we propose a cross-attribute-guided transformer fusion (CATF) module that effectively captures the long-range dependencies and relationships between FR and SB feature representations. The synergy created by the reciprocal flow of information in the dual cross-attention operations of the proposed CATF module enhances the performance of FR. Furthermore, we introduce a novel self-attention distillation framework that effectively highlights crucial facial regions, such as landmarks by aligning low-quality images with those of their high-quality counterparts in the feature space. The proposed self-attention distillation regularizes our network. to learn a unified quality-invariant feature representation in unconstrained environments. We conduct extensive experiments on various real-world FR benchmarks varying in quality. Experimental results demonstrate the superiority of our FR method compared to state-of-the-art FR studies.more » « less
-
Predicting workload behavior during workload execution is essential for dynamic resource optimization in multi-processor systems. Recent studies have proposed advanced machine learning techniques for dynamic workload prediction. Workload prediction can be cast as a time series forecasting problem. However, traditional forecasting models struggle to predict abrupt workload changes. These changes occur because workloads are known to go through phases. Prior work has investigated machine learning-based approaches for phase detection and prediction, but such approaches have not been studied in the context of dynamic workload forecasting. In this paper, we propose phase-aware CPU workload forecasting as a novel approach that applies long-term phase prediction to improve the accuracy of short-term workload forecasting. Phase-aware forecasting requires machine learning models for phase classification, phase prediction, and phase-based forecasting that have not been explored in this combination before. Furthermore, existing prediction approaches have only been studied in single-core settings. This work explores phase-aware workload forecasting with multi-threaded workloads running on multi-core systems. We propose different multi-core settings differentiated by the number of cores they access and whether they produce specialized or global outputs per core. We study various advanced machine learning models for phase classification, phase prediction, and phase-based forecasting in isolation and different combinations for each setting. We apply our approach to forecasting of multi-threaded Parsec and SPEC workloads running on an 8-core Intel Core-i9 platform. Our results show that combining GMM clustering with LSTMs for phase prediction and phase-based forecasting yields the best phase-aware forecasting results. An approach that uses specialized models per core achieves an average error of 23% with up to 22% improvement in prediction accuracy compared to a phase-unaware setup.more » « less
-
The automatic classification of electrocardiogram (ECG) signals has played an important role in cardiovascular diseases diagnosis and prediction. Deep neural networks (DNNs), particularly Convolutional Neural Networks (CNNs), have excelled in a variety of intelligent tasks including biomedical and health informatics. Most the existing approaches either partition the ECG time series into a set of segments and apply 1D-CNNs or divide the ECG signal into a set of spectrogram images and apply 2D-CNNs. These studies, however, suffer from the limitation that temporal dependencies between 1D segments or 2D spectrograms are not considered during network construction. Furthermore, meta-data including gender and age has not been well studied in these researches. To address those limitations, we propose a multi-module Recurrent Convolutional Neural Networks (RCNNs) consisting of both CNNs to learn spatial representation and Recurrent Neural Networks (RNNs) to model the temporal relationship. Our multi-module RCNNs architecture is designed as an end-to-end deep framework with four modules: (i) timeseries module by 1D RCNNs which extracts spatio-temporal information of ECG time series; (ii) spectrogram module by 2D RCNNs which learns visual-temporal representation of ECG spectrogram ; (iii) metadata module which vectorizes age and gender information; (iv) fusion module which semantically fuses the information from three above modules by a transformer encoder. Ten-fold cross validation was used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH) under different network configurations. The experimental results have proved that our proposed multi-module RCNNs with transformer encoder achieves the state-of-the-art with 99.14% F1 score and 98.29% accuracy.more » « less
-
null (Ed.)We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part-structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines.more » « less
-
Accurate cancer subtype prediction is crucial for personalized medicine. Integrating multi-omics data represents a viable approach to comprehending the intricate pathophysiology of complex diseases like cancer. Conventional machine learning techniques are not ideal for analyzing the complex interrelationships among different categories of omics data. Numerous models have been suggested using graph-based learning to uncover veiled representations and network formations unique to distinct types of omics data to heighten predictions regarding cancers and characterize patients’ profiles, amongst other applications aimed at improving disease management in medical research. The existing graph-based state-of-the-art multi-omics integration approaches for cancer subtype prediction, MOGONET, and SUPREME, use a graph convolutional network (GCN), which fails to consider the level of importance of neighboring nodes on a particular node. To address this gap, we hypothesize that paying attention to each neighbor or providing appropriate weights to neighbors based on their importance might improve the cancer subtype prediction. The natural choice to determine the importance of each neighbor of a node in a graph is to explore the graph attention network (GAT). Here, we propose MOGAT, a novel multi-omics integration approach, leveraging GAT models that incorporate graph-based learning with an attention mechanism. MOGAT utilizes a multi-head attention mechanism to extract appropriate information for a specific sample by assigning unique attention coefficients to neighboring samples. Based on our knowledge, our group is the first to explore GAT in multi-omics integration for cancer subtype prediction. To evaluate the performance of MOGAT in predicting cancer subtypes, we explored two sets of breast cancer data from TCGA and METABRIC. Our proposed approach, MOGAT, outperforms MOGONET by 32% to 46% and SUPREME by 2% to 16% in cancer subtype prediction in different scenarios, supporting our hypothesis. Our results also showed that GAT embeddings provide a better prognosis in differentiating the high-risk group from the low-risk group than raw features.