skip to main content


Title: Tunable Colossal Anomalous Hall Conductivity in Half‐Metallic Material Induced by d ‐Wave‐Like Spin‐Orbit Gap
Abstract

The anomalous Hall conductivity (AHC) in magnetic materials, resulting from inverted band topology, has emerged as a key adjustable function in spin‐torque devices and advanced magnetic sensors. Among systems with near‐half‐metallicity and broken time‐reversal symmetry, cobalt disulfide (CoS2) has proven to be a material capable of significantly enhancing its AHC. In this study, the AHC of CoS2is empirically assessed by manipulating the chemical potential through Fe‐ (hole) and Ni‐ (electron) doping. The primary mechanism underlying the colossal AHC is identified through the application of density functional theory and tight‐binding analyses. The main source of this substantial AHC is traced to four spin‐polarized massive Dirac dispersions in thekz= 0 plane of the Brillouin zone, located slightly below the Fermi level. In Co0.95Fe0.05S2, the AHC, which is directly proportional to the momentum‐space integral of the Berry curvature (BC), reached a record‐breaking value of 2507 Ω−1cm−1. This is because the BCs of the four Dirac dispersions all exhibit the same sign, a consequence of thed‐wave‐like spin‐orbit coupling among spin‐polarizedeg orbitals.

 
more » « less
NSF-PAR ID:
10496427
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present candidate structures for the most stable isomers for the VSc2N@C70, VSc2N@C76, VSc2N@C78, and VSc2N@C80using a systematic procedure that involves all possible isomers of the host fullerene cages. Subsequently, a detailed investigation of structural and electronic properties of the lowest energy isomers is performed using density functional theory in combination with large polarized Gaussian basis sets. The search correctly identifies the experimentally observed VSc2N@C80isomer as the most stable structure. The structural analysis shows that only VSc2N@C70has a non‐IPR cage among the four endohedral fullerenes. Respectively, VSc2N@C70and VSc2N@C76have nearly degenerate spin states with total spinS= 0 andS= 1. All the lowest energy cages are energetically stable and show significant electron accepting capacity comparable to C60.

     
    more » « less
  2. Abstract

    The interface between 2D topological Dirac states and ans‐wave superconductor is expected to support Majorana‐bound states (MBS) that can be used for quantum computing applications. Realizing these novel states of matter and their applications requires control over superconductivity and spin‐orbit coupling to achieve spin‐momentum‐locked topological interface states (TIS) which are simultaneously superconducting. While signatures of MBS have been observed in the magnetic vortex cores of bulk FeTe0.55Se0.45, inhomogeneity and disorder from doping make these signatures unclear and inconsistent between vortices. Here superconductivity is reported in monolayer (ML) FeTe1–ySey(Fe(Te,Se)) grown on Bi2Te3by molecular beam epitaxy (MBE). Spin and angle‐resolved photoemission spectroscopy (SARPES) directly resolve the interfacial spin and electronic structure of Fe(Te,Se)/Bi2Te3heterostructures. Fory = 0.25, the Fe(Te,Se) electronic structure is found to overlap with the Bi2Te3TIS and the desired spin‐momentum locking is not observed. In contrast, fory = 0.1, reduced inhomogeneity measured by scanning tunneling microscopy (STM) and a smaller Fe(Te,Se) Fermi surface with clear spin‐momentum locking in the topological states are found. Hence, it is demonstrated that the Fe(Te,Se)/Bi2Te3system is a highly tunable platform for realizing MBS where reduced doping can improve characteristics important for Majorana interrogation and potential applications.

     
    more » « less
  3. Abstract

    Dinitrogen coordination to iron centers underpins industrial and biological fixation in the Haber–Bosch process and by the FeM cofactors in the nitrogenase enzymes. The latter employ local high‐spin metal centers; however, iron–dinitrogen coordination chemistry remains dominated by low‐valent states, contrasting the enzyme systems. Here, we report a high‐spin mixed‐valentcis‐(μ‐1,2‐dinitrogen)diiron(I/II) complex [(FeBr)2(μ‐N2)Lbis](2), where [Lbis]is a bis(β‐diketiminate) cyclophane. Field‐applied Mössbauer spectra, dc and ac magnetic susceptibility measurements, and computational methods support a delocalizedS=7/2Fe2N2unit withD=−5.23 cm−1and consequent slow magnetic relaxation.

     
    more » « less
  4. Abstract

    Dinitrogen coordination to iron centers underpins industrial and biological fixation in the Haber–Bosch process and by the FeM cofactors in the nitrogenase enzymes. The latter employ local high‐spin metal centers; however, iron–dinitrogen coordination chemistry remains dominated by low‐valent states, contrasting the enzyme systems. Here, we report a high‐spin mixed‐valentcis‐(μ‐1,2‐dinitrogen)diiron(I/II) complex [(FeBr)2(μ‐N2)Lbis](2), where [Lbis]is a bis(β‐diketiminate) cyclophane. Field‐applied Mössbauer spectra, dc and ac magnetic susceptibility measurements, and computational methods support a delocalizedS=7/2Fe2N2unit withD=−5.23 cm−1and consequent slow magnetic relaxation.

     
    more » « less
  5. Abstract

    The quinary members in the solid solution Hf2Fe1−δRu5−xIrx+δB2(x=1–4, VE=63–66) have been investigated experimentally and computationally. They were synthesized via arc‐melting and analyzed by EDX and X‐ray diffraction. Density functional theory (DFT) calculations predicted a preference for magnetic ordering in all members, but with a strong competition between ferro‐ and antiferromagnetism arising from interchain Fe−Fe interactions. The spin exchange and magnetic anisotropy energies predicted the lowest magnetic hardness forx=1 and 3 and the highest forx=2. Magnetization measurements confirm the DFT predictions and demonstrate that the antiferromagnetic ordering (TN=55–70 K) found at low magnetic fields changed to ferromagnetic (TC=150–750 K) at higher fields, suggesting metamagnetic behavior for all samples. As predicted, Hf2FeRu3Ir2B2has the highest intrinsic coercivity (Hc=74 kA/m) reported to date for Ti3Co5B2‐type phases. Furthermore, all coercivities outperform that of ferromagnetic Hf2FeIr5B2, indicating the importance of AFM interactions in enhancing magnetic anisotropy in these materials. Importantly, two members (x=1 and 4) maintain intrinsic coercivities in the semi‐hard range at room temperature. This study opens an avenue for controlling magnetic hardness by modulating antagonistic AFM and FM interactions in low‐dimensional rare‐earth‐free magnetic materials.

     
    more » « less