skip to main content


This content will become publicly available on March 20, 2025

Title: Polymorphism and π Stacking Affect Thermal Expansion Behavior in Halogen-Bonded Cocrystals Based on 1,4-Diiodoperchlorobenzene
The thermal expansion behavior of a series of halogen-bonded cocrystals containing 1,4-diiodoperchlorobenzene as the donor is described. Two of the solids are polymorphs and contain 4-stilbazole as the acceptor, while the third solid contains 4-(phenylethynyl)pyridine as the acceptor, and this solid is isostructural with one of the polymorphs. All solids are sustained by I···N halogen bonds, and the least thermal expansion occurs along this direction in all solids. The polymorphs exhibit significant differences in π stacking, and we show that electronically similar face-to-face stacked rings undergo more expansion compared to electronically different stacked rings. Moreover, in the two polymorphs, the directions of moderate expansion and most expansion are reversed, demonstrating how cocrystal polymorphism can affect material properties.  more » « less
Award ID(s):
2411677
NSF-PAR ID:
10496507
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
Crystal Growth & Design
Volume:
24
Issue:
6
ISSN:
1528-7483
Page Range / eLocation ID:
2468-2474
Subject(s) / Keyword(s):
["Aromatic compounds","Hydrocarbons","Molecular interactions"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A series of aromatic organic molecules functionalized with different halogen atoms (I/ Br), motion-capable groups (olefin, azo or imine) and molecular length were designed and synthesized. The molecules self-assemble in the solid state through halogen bonding and exhibit molecular packing sustained by either herringbone or face-to-face π-stacking, two common motifs in organic semiconductor molecules. Interestingly, dynamic pedal motion is only achieved in solids with herringbone packing. On average, solids with herringbone packing exhibit larger thermal expansion within the halogen-bonded sheets due to motion occurrence and molecular twisting, whereas molecules with face-to-face π-stacking do not undergo motion or twisting. Thermal expansion along the π-stacked direction is surprisingly similar, but slightly larger for the face-to-face π-stacked solids due to larger changes in π-stacking distances with temperature changes. The results speak to the importance of crystal packing and intermolecular interaction strength when designing aromatic-based solids for organic electronics applications. 
    more » « less
  2. Abstract

    Control over thermal expansion (TE) behaviors in solid materials is often accomplished by modifying the molecules or intermolecular interactions within the solid. Here, we use a mixed cocrystal approach and incorporate molecules with similar chemical structures, but distinct functionalities. Development of mixed cocrystals is at a nascent stage, and here we describe the first mixed cocrystals sustained by one‐dimensional halogen bonds. Within each mixed cocrystal, the halogen‐bond donor is fixed, while the halogen‐bond acceptor site contains two molecules in a variable ratio. X‐ray diffraction demonstrates isostructurality across the series, and SEM‐EDS shows equal distribution of heavy atoms and similar atomic compositions across all mixed cocrystals. The acceptor molecules differ in their ability to undergo dynamic motion in the solid state. The synthetic equivalents of motion capable and incapable molecules were systematically varied to yield direct tunabililty in TE behavior.

     
    more » « less
  3. Abstract

    Control over thermal expansion (TE) behaviors in solid materials is often accomplished by modifying the molecules or intermolecular interactions within the solid. Here, we use a mixed cocrystal approach and incorporate molecules with similar chemical structures, but distinct functionalities. Development of mixed cocrystals is at a nascent stage, and here we describe the first mixed cocrystals sustained by one‐dimensional halogen bonds. Within each mixed cocrystal, the halogen‐bond donor is fixed, while the halogen‐bond acceptor site contains two molecules in a variable ratio. X‐ray diffraction demonstrates isostructurality across the series, and SEM‐EDS shows equal distribution of heavy atoms and similar atomic compositions across all mixed cocrystals. The acceptor molecules differ in their ability to undergo dynamic motion in the solid state. The synthetic equivalents of motion capable and incapable molecules were systematically varied to yield direct tunabililty in TE behavior.

     
    more » « less
  4. Designing materials to have three unique but predictable thermal expansion axes represents a major challenge. Inorganic materials and hybrid frameworks tend to crystallize in high-symmetry space groups, which necessarily limits this by affording isotropic behavior. On the other hand, molecular organic materials tend to crystallize in lower-symmetry space groups, offering significant opportunity to achieve anisotropic properties. The challenge arises in self-assembling the organic components into a predictable arrangement to afford predictable thermal expansion properties. Here, we demonstrate a design strategy for engineering organic solid-state materials that exhibit anisotropic thermomechanical behaviors. Presented are a series of multicomponent solids wherein one component features a BODPIY core strategically decorated with orthogonal hydrogen- and halogen-bond donor groups. A series of size-matched halogen-bond acceptors are used as the second component in each solid. By matching the molecular dimensions with the interaction strength, we obtained good control over the anisotropic thermal expansion of the molecular materials. Moreover, using shape-size mimicry and propensity for molecular motion, a rare ternary molecular system that is isostructural to the two binary solids was successfully achieved. The diiodo-functionalized BODIPY core in this study has been previously used in photocatalysts, and halogen bonding was hypothesized as a driving force; here, we provide corroborating solution and solid-state evidence of intermolecular halogen bonding in multicomponent solids featuring a 2,6-diiodo BODIPY. 
    more » « less
  5. Thermal expansion (TE) behavior in solid-state materials is influenced by both molecular and supramolecular structure. For solid-state materials assembled through covalent bonds, such as carbon allotropes, solids with higher dimensionality (i.e., diamond) exhibit less TE than solids with lower dimensionality (e.g., fullerene, graphite). Thus, as the dimensionality of the solid increases, the TE decreases. However, an analogous and systematic variation of the dimensionality in solid-state materials assembled through noncovalent bonds with a correlation to TE has not been studied. Here, we designed a series of solids based on dimensional hierarchy to afford materials with zero-dimensional (0D), 1D, and 2D hydrogen-bonded structures. The 2D materials are structural analogues of graphite and covalent-organic frameworks, and we demonstrate that these 2D solids exhibit unique biaxial zero TE with anisotropic and colossal TE along the π-stacked direction (α ∼ 200 MK–1). The overall behavior in the 2D hydrogen-bonded solids is similar to 2D covalent-bonded solids; however, the coefficient of TE along the π-stacked direction for these hydrogen-bonded solids is an order of magnitude higher than in 2D graphite or phosphorus allotropes. The hierarchal materials design strategy and correlation to TE properties described herein can be broadly applied to the design and synthesis of new solid-state materials sustained by covalent or noncovalent bonds with control over solid-state behaviors. 
    more » « less