skip to main content


This content will become publicly available on March 21, 2025

Title: Limits to knickzone retreat and bedrock river incision on the Hawaiian islands
Abstract

A knickzone is defined as a waterfall or an oversteepened fluvial reach encompassing a series of waterfalls. Knickzones are remarkable landforms in that they may represent diametrically opposed conditions: either rapid upstream propagation of base‐level fall or a condition of stability and stalled response to base‐level fall. Knickzones on the Hawaiian islands exhibit evidence of both behaviours, and in this study, we explore whether this dichotomy can be explained by a threshold stream power for river incision. Topographic analysis shows that the transition between fluvial hanging valleys, where no measurable upstream retreat from the stream junction or coastline has occurred, and knickzones that have retreated or formed upstream of their outlet can be defined by a range of catchment sizes from ~0.5 to 6 km2. This transition is present on all volcanoes in our analysis regardless of significant base‐level fall, and there is no clear trend of drainage area above knickzones with volcano age. To explain these observations, we hypothesize that knickzones form or stabilize where maximum unit stream power () does not exceed the critical unit stream power required to incise bedrock . Using estimates of a maximum possible flood discharge as a function of drainage area to calculate , we show that drainage areas above knickzones are well described by the theoretical prediction that incision stalls when , where falls in a narrow range from 14 to 40 kW/m2. Furthermore, we demonstrate that knickzone positions are largely insensitive to mean climate conditions, likely reflecting the fact that extreme flood events are either insensitive or inversely correlated with mean annual rainfall.

 
more » « less
NSF-PAR ID:
10496574
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earth Surface Processes and Landforms
ISSN:
0197-9337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Prior numerical modeling work has suggested that incision into sub‐horizontal layered stratigraphy with variable erodibility induces non‐uniform erosion rates even if base‐level fall is steady and sustained. Erosion rates of cliff bands formed in the stronger rocks in a stratigraphic sequence can greatly exceed the rate of base‐level fall. Where quartz in downstream sediment is sourced primarily from the stronger, cliff‐forming units, erosion rates estimated from concentrations of cosmogenic beryllium‐10 (10Be) in detrital sediment will reflect the locally high erosion rates in retreating cliff bands. We derive theoretical relationships for threshold hillslopes and channels described by the stream‐power incision model as a quantitative guide to the potential magnitude of this amplification of10Be‐derived erosion rates above the rate of base‐level fall. Our analyses predict that the degree of erosion rate amplification is a function of bedding dip and either the ratio of rock erodibility in alternating strong and weak layers in the channel network, or the ratio of cliff to intervening‐slope gradient on threshold hillslopes. We test our predictions in the cliff‐and‐bench landscape of the Grand Staircase in southern Utah, USA. We show that detrital cosmogenic erosion rates in this landscape are significantly higher (median 300 m/Ma) than the base‐level fall rate (~75 m/Ma) determined from the incision rate of a trunk stream into a ~0.6 Ma basalt flow emplaced along a 16 km reach of the channel. We infer a 3–6‐fold range in rock strength from near‐surface P‐wave velocity measurements. The approximately four‐fold difference between the median10Be‐derived erosion rate and the long‐term rate of base‐level fall is consistent with our model and the observation that the stronger, cliff‐forming lithologies in this landscape are the primary source of quartz in detrital sediments. © 2020 John Wiley & Sons, Ltd.

     
    more » « less
  2. Valla, Pierre (Ed.)
    Abstract Over the past few decades, tectonic geomorphology has been widely implemented to constrain spatial and temporal patterns of fault slip, especially where existing geologic or geodetic data are poor. We apply this practice along the eastern margin of Bull Mountain, Southwest Montana, where 15 transient channels are eroding into the flat, upstream relict landscape in response to an ongoing period of increased base level fall along the Western North Boulder fault. We aim to improve constraints on the spatial and temporal slip rates across the Western North Boulder fault zone by applying channel morphometrics, cosmogenic erosion rates, bedrock characteristics, and calibrated reproductions of the modern river profiles using a 1-dimensional stream power incision model that undergoes a change in the rate of base level fall. We perform over 104 base level fall simulations to explore a wide range of fault slip dynamics and stream power parameters. Our best fit simulations suggest that the Western North Boulder fault started as individual fault segments along the middle to southern regions of Bull Mountain that nucleated around 6.2 to 2.5 Ma, respectively. This was followed by the nucleation of fault segments in the northern region around 1.5 to 0.4 Ma. We recreate the evolution of the Western North Boulder fault to show that through time, these individual segments propagate at the fault tips and link together to span over 40 km, with a maximum slip of 462 m in the central portion of the fault. Fault slip rates range from 0.02 to 0.45 mm/yr along strike and are consistent with estimates for other active faults in the region. We find that the timing of fault initiation coincides well with the migration of the Yellowstone hotspot across the nearby Idaho-Montana border and thus attribute the initiation of extension to the crustal bulge from the migrating hotspot. Overall, we provide the first quantitative constraints on fault initiation and evolution of the Western North Boulder fault, perhaps the farthest north basin in the Northern Basin and Range province that such constraints exist. We show that river profiles are powerful tools for documenting the spatial and temporal patterns of normal fault evolution, especially where other geologic/geodetic methods are limited, proving to be a vital tool for accurate tectonic hazard assessments. 
    more » « less
  3. Abstract

    The landscape hidden beneath the Greenland Ice Sheet remains one of the most sparsely mapped regions on Earth, but offers a unique record of environmental conditions prior to and during widespread glaciation, and of the ice sheet's response to changing climates. In particular, subglacial valleys observed across Greenland may preserve geomorphological information pertaining to landscape and ice sheet evolution. Here we analyze the morphology of a subglacial valley network in northern Greenland using bed elevation measurements acquired during multi‐year airborne radio‐echo sounding surveys. Channel profile morphologies are consistent with a primarily fluvial origin of the network, with evidence for localized modification by ice and/or meltwater. Gravity and magnetic anomalies suggest that the spatial organisation of the valley network is influenced by regional‐scale geological structure, implying a long‐lived and well‐established hydrological system. We also document two knickzones in the valley longitudinal profile and terraces above the channel floor in the lower course of the network. These observations, combined with stream power modeling, indicate that northern Greenland experienced two episodes of relative base level fall during the Neogene (∼150 m at ca. 12–3.7 Ma and ∼380 m at ca. 8.2–2.8 Ma) that resulted in channel profile adjustment via incision and knickzone retreat. The timing of the inferred base level fall correlates with other onshore and offshore records of uplift, denudation, and/or relative sea level change, and we suggest that tectonic and/or mantle‐driven uplift played an important role in the genesis of the modern landscape of northern Greenland.

     
    more » « less
  4. We present a multimodel analysis for mechanistic hypothesis testing in landscape evolution theory. The study site is a watershed with well‐constrained initial and boundary conditions in which a river network locally incised 50 m over the last 13 ka. We calibrate and validate a set of 37 landscape evolution models designed to hierarchically test elements of complexity from four categories: hillslope processes, channel processes, surface hydrology, and representation of geologic materials. Comparison of each model to a base model, which uses stream power channel incision, uniform lithology, hillslope transport by linear diffusion, and surface water discharge proportional to drainage area, serves as a formal test of which elements of complexity improve model performance. Model fit is assessed using an objective function based on a direct difference between observed and simulated modern topography. A hybrid optimization scheme identifies optimal parameters and uncertainty. Multimodel analysis determines which elements of complexity improve simulation performance. Validation tests which model improvements persist when models are applied to an independent watershed. The three most important model elements are (1) spatial variation in lithology (differentiation between shale and glacial till), (2) a fluvial erosion threshold, and (3) a nonlinear relationship between slope and hillslope sediment flux. Due to nonlinear interactions between model elements, some process representations (e.g., nonlinear hillslopes) only become important when paired with the inclusion of other processes (e.g., erosion thresholds). This emphasizes the need for caution in identifying the minimally sufficient process set. Our approach provides a general framework for hypothesis testing in landscape evolution.

     
    more » « less
  5. Abstract

    Steep landscapes evolve largely by debris flows, in addition to fluvial and hillslope processes. Abundant field observations document that debris flows incise valley bottoms and transport substantial sediment volumes, yet their contributions to steepland morphology remain uncertain. This has, in turn, limited the development of debris‐flow incision rate formulations that produce morphology consistent with natural landscapes. In many landscapes, including the San Gabriel Mountains (SGM), California, steady‐state fluvial channel longitudinal profiles are concave‐up and exhibit a power‐law relationship between channel slope and drainage area. At low drainage areas, however, valley slopes become nearly constant. These topographic forms result in a characteristically curved slope‐area signature in log‐log space. Here, we use a one‐dimensional landform evolution model that incorporates debris‐flow erosion to reproduce the relationship between this curved slope‐area signature and erosion rate in the SGM. Topographic analysis indicates that the drainage area at which steepland valleys transition to fluvial channels correlates with measured erosion rates in the SGM, and our model results reproduce these relationships. Further, the model only produces realistic valley profiles when parameters that dictate the relationship between debris‐flow erosion, valley‐bottom slope, and debris‐flow depth are within a narrow range. This result helps place constraints on the mathematical form of a debris‐flow incision law. Finally, modeled fluvial incision outpaces debris‐flow erosion at drainage areas less than those at which valleys morphologically transition from near‐invariant slopes to concave profiles. This result emphasizes the critical role of debris‐flow incision for setting steepland form, even as fluvial incision becomes the dominant incisional process.

     
    more » « less