skip to main content


Title: Limits on Optical Counterparts to the Repeating Fast Radio Burst 20180916B from High-speed Imaging with Gemini-North/‘Alopeke
Abstract

We report on contemporaneous optical observations at ≈10 ms timescales from the fast radio burst (FRB) 20180916B of two repeat bursts (FRB 20201023 and FRB 20220908) taken with the ‘Alopeke camera on the Gemini-North telescope. These repeats have radio fluences of 2.8 and 3.5 Jy ms, respectively, approximately in the lower 50th percentile for fluence from this repeating burst. The ‘Alopeke data reveal no significant optical detections at the FRB position and we place 3σupper limits to the optical fluences of <8.3 × 10−3and <7.7 × 10−3Jy ms after correcting for line-of-sight extinction. Together, these yield the most sensitive limits to the optical-to-radio fluence ratio of an FRB on these timescales withην< 3 × 10−3by roughly an order of magnitude. These measurements rule out progenitor models where FRB 20180916B has a similar fluence ratio to optical pulsars, such as the Crab pulsar, or where optical emission is produced as inverse-Compton radiation in a pulsar magnetosphere or young supernova remnant. Our ongoing program with ‘Alopeke on Gemini-North will continue to monitor repeating FRBs, including FRB 20180916B, to search for optical counterparts on millisecond timescales.

 
more » « less
Award ID(s):
2206490 2206492
NSF-PAR ID:
10496575
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
964
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 121
Size(s):
Article No. 121
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    FRB 20220912A is a repeating Fast Radio Burst (FRB) that was discovered in Fall 2022 and remained highly active for several months. We report the detection of 35 FRBs from 541 h of follow-up observations of this source using the recently refurbished Allen Telescope Array, covering 1344 MHz of bandwidth primarily centred at 1572 MHz. All 35 FRBs were detected in the lower half of the band with non-detections in the upper half and covered fluences from 4–431 Jy-ms (median = 48.27 Jy-ms). We find consistency with previous repeater studies for a range of spectrotemporal features including: bursts with downward frequency drifting over time; a positive correlation between bandwidth and centre frequency; and a decrease in sub-burst duration over time. We report an apparent decrease in the centre frequency of observed bursts over the two months of the observing campaign (corresponding to a drop of 6.21 ± 0.76 MHz per d). We predict a cut-off fluence for FRB 20220912A of Fmax ≲ 104 Jy-ms, for this source to be consistent with the all-sky rate, and find that FRB 20220912A significantly contributed to the all-sky FRB rate at a level of a few per cent for fluences of ∼100 Jy-ms. Finally, we investigate characteristic time-scales and sub-burst periodicities and find (a) a median inter-subburst time-scale of 5.82 ± 1.16 ms in the multi-component bursts and (b) no evidence of strict periodicity even in the most evenly spaced multi-component burst in the sample. Our results demonstrate the importance of wideband observations of FRBs, and provide an important set of observational parameters against which to compare FRB progenitor and emission mechanism models.

     
    more » « less
  2. ABSTRACT

    We present a sample of well-localized fast radio bursts (FRBs) discovered by the MeerTRAP project at the MeerKAT telescope in South Africa. We discovered the three FRBs in single coherent tied-array beams and localized them to an area of ∼1 arcmin2. We investigate their burst properties, scattering, repetition rates, and localizations in a multiwavelength context. FRB 20201211A shows hints of scatter broadening but is otherwise consistent with instrumental dispersion smearing. For FRB 20210202D, we discovered a faint post-cursor burst separated by ∼200 ms, suggesting a distinct burst component or a repeat pulse. We attempt to associate the FRBs with host galaxy candidates. For FRB 20210408H, we tentatively (0.35–0.53 probability) identify a compatible host at a redshift ∼0.5. Additionally, we analyse the MeerTRAP survey properties, such as the survey coverage, fluence completeness, and their implications for the FRB population. Based on the entire sample of 11 MeerTRAP FRBs discovered by the end of 2021, we estimate the FRB all-sky rates and their scaling with the fluence threshold. The inferred FRB all-sky rates at 1.28 GHz are $8.2_{-4.6}^{+8.0}$ and $2.1_{-1.1}^{+1.8} \times 10^3 \: \text{sky}^{-1} \: \text{d}^{-1}$ above 0.66 and 3.44 Jy ms for the coherent and incoherent surveys, respectively. The scaling between the MeerTRAP rates is flatter than at higher fluences at the 1.4σ level. There seems to be a deficit of low-fluence FRBs, suggesting a break or turn-over in the rate versus fluence relation below 2 Jy ms. We speculate on cosmological or progenitor-intrinsic origins. The cumulative source counts within our surveys appear consistent with the Euclidean scaling.

     
    more » « less
  3. Abstract

    In recent years, the Canadian Hydrogen Intensity Mapping Experiment (CHIME) interferometer has revealed a large number of fast radio bursts (FRBs), including a sizable population that demonstrates repeating behavior. This transit facility, employing a real-time FRB search pipeline, continually scans the sky with declinations between −10° and 90° for events with fluences ⪆0.4 Jy ms. We simulate a population of repeating FRBs by performing Monte Carlo simulations of underlying source populations processed through a mock CHIME/FRB observing pipeline. Assuming intrinsic repeater rates follow a Poisson distribution, we test assumptions about the burst populations of the repeater sample, and construct models of the FRB sample assuming various cosmological distributions. We infer the completeness of CHIME/FRB observations as a function of observing cadence and redshifts out to 0.5. We find that, if all simulated bursts have a fixed Poisson probability of repetition over their integrated time of observation, repeating burst detections across comoving volume should continue to grow near linearly on the order of decades. We predict that around 170 of the current CHIME/FRB one-off sources will ultimately repeat. We also make projections for FRB repeaters by future facilities and demonstrate that the number of repeaters they find could saturate on a ∼3 yr timescale.

     
    more » « less
  4. Abstract

    The repeating FRB 20201124A was first discovered by CHIME/FRB in November of 2020, after which it was seen to repeat a few times over several months. It entered a period of high activity in April of 2021, at which time several observatories recorded tens to hundreds more bursts from the source. These follow-up observations enabled precise localization and host-galaxy identification. In this paper, we report on the CHIME/FRB-detected bursts from FRB 20201124A, including their best-fit morphologies, fluences, and arrival times. The large exposure time of the CHIME/FRB telescope toward the location of this source allows us to constrain its rates of activity. We analyze the repetition rates over different spans of time, constraining the rate prior to discovery to <3.4 day−1(at 3σ), and demonstrate a significant change in the event rate following initial detection. Lastly, we perform a maximum-likelihood estimation of a power-law luminosity function, finding a best-fit indexα= −4.6 ± 1.3 ± 0.6, with a break at a fluence threshold ofFmin16.6Jy ms, consistent with the fluence completeness limit of the observations. This index is consistent within uncertainties with those of other repeating FRBs for which it has been determined.

     
    more » « less
  5. null (Ed.)
    ABSTRACT The origin of fast radio bursts (FRBs) still remains a mystery, even with the increased number of discoveries in the last 3 yr. Growing evidence suggests that some FRBs may originate from magnetars. Large, single-dish telescopes such as Arecibo Observatory (AO) and Green Bank Telescope (GBT) have the sensitivity to detect FRB 121102-like bursts at gigaparsec distances. Here, we present searches using AO and GBT that aimed to find potential radio bursts at 11 sites of past gamma-ray bursts that show evidence for the birth of a magnetar. We also performed a search towards GW170817, which has a merger remnant whose nature remains uncertain. We place $10\sigma$ fluence upper limits of ≈0.036 Jy ms at 1.4 GHz and ≈0.063 Jy ms at 4.5 GHz for the AO data and fluence upper limits of ≈0.085 Jy ms at 1.4 GHz and ≈0.098 Jy ms at 1.9 GHz for the GBT data, for a maximum pulse width of ≈42 ms. The AO observations had sufficient sensitivity to detect any FRB of similar luminosity to the one recently detected from the Galactic magnetar SGR 1935+2154. Assuming a Schechter function for the luminosity function of FRBs, we find that our non-detections favour a steep power-law index (α ≲ −1.1) and a large cut-off luminosity (L0 ≳ 1041 erg s−1). 
    more » « less