skip to main content


Title: Quantum simulation of an extended Dicke model with a magnetic solid
Abstract

The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+spins (Fe3+magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems.

 
more » « less
Award ID(s):
2207283
NSF-PAR ID:
10496589
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Materials
Volume:
5
Issue:
1
ISSN:
2662-4443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The existence of quantum tricriticality and exotic phases are found in a tricritical Dicke triangle (TDT) where three cavities, each one containing an ensemble of three-level atoms, are connected to each other through the action of an artificial magnetic field. The conventional superradiant phase (SR) is connected to the normal phase through first- and second-order boundaries, with tricritical points located at the intersection of such boundaries. Apart from the SR phase, a chiral superradiant (CSR) phase is found by tuning the artificial magnetic field. This phase is characterized by a nonzero photon current and its boundary presents chiral tricritical points (CTCPs). Through the study of different critical exponents, we are able to differentiate the universality class of the CTCP and TCP from that of second-order critical points, as well as find distinctive critical behavior among the two different superradiant phases. The TDT can be implemented in various systems, including atoms in optical cavities as well as the circuit QED system, allowing the exploration of a great variety of critical manifolds.

     
    more » « less
  2. Abstract

    Some of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled photon–atom systems; one such property is quantum squeezing leading to suppressed quantum fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground state of the system and does not require external driving, and (2) the squeezing can be perfect in the sense that quantum fluctuations of certain observables are completely suppressed. Specifically, we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a single photonic mode, and we found that the photon–atom fluctuation vanishes at the onset of the superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover, when a finite number of atoms is considered, the variance of the fluctuation around the critical point asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed states of flying photons obtained using standard generation protocols with external driving, the squeezing obtained in the ground state of the ultrastrongly coupled photon–atom systems is resilient against unpredictable noise.

     
    more » « less
  3. Abstract

    The role of hydrogen atoms as surface ligands on metal nanoclusters is of profound importance but remains difficult to directly study. While hydrogen atoms often appear to be incorporated formally as hydrides, evidence suggests that they donate electrons to the cluster's delocalized superatomic orbitals and may consequently behave as acidic protons that play key roles in synthetic or catalytic mechanisms. Here we directly test this assertion for the prototypical Au9(PPh3)8H2+nanocluster, formed by addition of a hydride to the well‐characterized Au9(PPh3)83+. Using gas‐phase infrared spectroscopy, we were able to unambiguously isolate Au9(PPh3)8H2+and Au9(PPh3)8D2+, revealing an Au−H stretching mode at 1528 cm−1that shifts to 1038 cm−1upon deuteration. This shift is greater than the maximum expected for a typical harmonic potential, suggesting a potential governing cluster‐H bonding that has some square‐well character consistent with the hydrogen nucleus behaving as a metal atom in the cluster core. Complexing this cluster with very weak bases reveals a redshift of 37 cm−1in the Au−H vibration, consistent with those typically seen for moderately acidic groups in gas phase molecules and providing an estimate of the acidity of Au9(PPh3)8H2+, at least with regard to its surface reactivity.

     
    more » « less
  4. Abstract

    The role of hydrogen atoms as surface ligands on metal nanoclusters is of profound importance but remains difficult to directly study. While hydrogen atoms often appear to be incorporated formally as hydrides, evidence suggests that they donate electrons to the cluster's delocalized superatomic orbitals and may consequently behave as acidic protons that play key roles in synthetic or catalytic mechanisms. Here we directly test this assertion for the prototypical Au9(PPh3)8H2+nanocluster, formed by addition of a hydride to the well‐characterized Au9(PPh3)83+. Using gas‐phase infrared spectroscopy, we were able to unambiguously isolate Au9(PPh3)8H2+and Au9(PPh3)8D2+, revealing an Au−H stretching mode at 1528 cm−1that shifts to 1038 cm−1upon deuteration. This shift is greater than the maximum expected for a typical harmonic potential, suggesting a potential governing cluster‐H bonding that has some square‐well character consistent with the hydrogen nucleus behaving as a metal atom in the cluster core. Complexing this cluster with very weak bases reveals a redshift of 37 cm−1in the Au−H vibration, consistent with those typically seen for moderately acidic groups in gas phase molecules and providing an estimate of the acidity of Au9(PPh3)8H2+, at least with regard to its surface reactivity.

     
    more » « less
  5. null (Ed.)
    We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states. Density-matrix renormalization group calculations reveal the presence of a wide variety of complex solid phases with broken lattice symmetries. In addition, we identify a regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries. From a mapping to the triangular lattice quantum dimer model, and theories of quantum phase transitions out of the proximate solid phases, we argue that this regime could contain one or more phases with topological order. Our results provide the foundation for theoretical and experimental explorations of crystalline and liquid states using programmable quantum simulators based on Rydberg atom arrays. 
    more » « less