skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on November 14, 2024

Title: Computational investigation of outflow graft variation impact on hemocompatibility profile in LVADs
Abstract Background

Hemocompatibility‐related adverse events (HRAE) occur commonly in patients with left ventricular assist devices (LVADs) and add to morbidity and mortality. It is unclear whether the outflow graft orientation can impact flow conditions leading to HRAE. This study presents a simulation‐based approach using exact patient anatomy from medical images to investigate the influence of outflow cannula orientation in modulating flow conditions leading to HRAEs.

Methods

A 3D model of a proximal aorta and outflow graft was reconstructed from a computed tomography (CT) scan of an LVAD patient and virtually modified to model multiple cannula orientations (n = 10) by varying polar (cranio‐caudal) (n = 5) and off‐set (anterior–posterior) (n = 2) angles. Time‐dependent computational flow simulations were then performed for each anatomical orientation. Qualitative and quantitative hemodynamics metrics of thrombogenicity including time‐averaged wall shear stress (TAWSS), oscillatory shear index (OSI), endothelial cell platelet activation potential (ECAP), particle residence time (PRT), and platelet activation potential (PLAP) were analyzed.

Results

Within the simulations performed, endothelial cell activation potential (ECAP) and particle residence time (PRT) were found to be lowest with a polar angle of 85°, regardless of offset angle. However, polar angles that produced parameters at levels least associated with thrombosis varied when the offset angle was changed from 0° to 12°. For offset angles of 0° and 12° respectively, flow shear was lowest at 65° and 75°, time averaged wall shear stress (TAWSS) was highest at 85° and 35°, and platelet activation potential (PLAP) was lowest at 65° and 45°.

Conclusion

This study suggests that computational fluid dynamic modeling based on patient‐specific anatomy can be a powerful analytical tool when identifying optimal positioning of an LVAD. Contrary to previous work, our findings suggest that there may be an “ideal” outflow cannula for each individual patient based on a CFD‐based hemocompatibility profile.

 
more » « less
NSF-PAR ID:
10496645
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Artificial Organs
Volume:
48
Issue:
4
ISSN:
0160-564X
Format(s):
Medium: X Size: p. 375-385
Size(s):
p. 375-385
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arteriovenous grafts are routinely placed to facilitate hemodialysis in patients with end stage renal disease. These grafts are conduits between higher pressure arteries and lower pressure veins. The connection on the vein end of the graft, known as the graft-to-vein anastomosis, fails frequently and chronically due to high rates of stenosis and thrombosis. These failures are widely believed to be associated with pathologically high and low flow shear strain rates at the graft-to-vein anastomosis. We hypothesized that consistent with pipe flow dynamics and prior work exploring vein-to-artery anastomosis angles in arteriovenous fistulas, altering the graft-to-vein anastomosis angle can reduce the incidence of pathological shear rate fields. We tested this via computational fluid dynamic simulations of idealized arteriovenous grafts, using the Bird-Carreau constitutive law for blood. We observed that low graft-to-vein anastomosis angles ($$<20^{\circ }$$<20) led to increased incidence of pathologically low shear rates, and that high graft-to-vein anastomosis angles ($$>40^{\circ }$$>40) led to increased incidence of pathologically high shear rates. Optimizations predicted that an intermediate  ($$\sim 30^\circ$$30) graft-to-anastomosis angle was optimal. Our study demonstrates that graft-to-vein anastomosis angles can significantly impact pathological flow fields, and can be optimized to substantially improve arteriovenous graft patency rates.

     
    more » « less
  2. Background:

    Graft placement is a modifiable and often discussed surgical factor in anterior cruciate ligament (ACL) reconstruction (ACLR). However, the sensitivity of functional knee mechanics to variability in graft placement is not well understood.

    Purpose:

    To (1) investigate the relationship of ACL graft tunnel location and graft angle with tibiofemoral kinematics in patients with ACLR, (2) compare experimentally measured relationships with those observed with a computational model to assess the predictive capabilities of the model, and (3) use the computational model to determine the effect of varying ACL graft tunnel placement on tibiofemoral joint mechanics during walking.

    Study Design:

    Controlled laboratory study.

    Methods:

    Eighteen participants who had undergone ACLR were tested. Bilateral ACL footprint location and graft angle were assessed using magnetic resonance imaging (MRI). Bilateral knee laxity was assessed at the completion of rehabilitation. Dynamic MRI was used to measure tibiofemoral kinematics and cartilage contact during active knee flexion-extension. Additionally, a total of 500 virtual ACLR models were created from a nominal computational knee model by varying ACL footprint locations, graft stiffness, and initial tension. Laxity tests, active knee extension, and walking were simulated with each virtual ACLR model. Linear regressions were performed between internal knee mechanics and ACL graft tunnel locations and angles for the patients with ACLR and the virtual ACLR models.

    Results:

    Static and dynamic MRI revealed that a more vertical graft in the sagittal plane was significantly related ( P < .05) to a greater laxity compliance index ( R2= 0.40) and greater anterior tibial translation and internal tibial rotation during active knee extension ( R2= 0.22 and 0.23, respectively). Similarly, knee extension simulations with the virtual ACLR models revealed that a more vertical graft led to greater laxity compliance index, anterior translation, and internal rotation ( R2= 0.56, 0.26, and 0.13). These effects extended to simulations of walking, with a more vertical ACL graft inducing greater anterior tibial translation, ACL loading, and posterior migration of contact on the tibial plateaus.

    Conclusion:

    This study provides clinical evidence from patients who underwent ACLR and from complementary modeling that functional postoperative knee mechanics are sensitive to graft tunnel locations and graft angle. Of the factors studied, the sagittal angle of the ACL was particularly influential on knee mechanics.

    Clinical Relevance:

    Early-onset osteoarthritis from altered cartilage loading after ACLR is common. This study shows that postoperative cartilage loading is sensitive to graft angle. Therefore, variability in graft tunnel placement resulting in small deviations from the anatomic ACL angle might contribute to the elevated risk of osteoarthritis after ACLR.

     
    more » « less
  3. Endothelial mechanobiology is a key consideration in the progression of vascular dysfunction, including atherosclerosis. However mechanistic connections between the clinically associated physical stimuli, vessel stiffness and shear stress, and how they interact to modulate plaque progression remain incompletely characterized. Vessel-chip systems are excellent candidates for modeling vascular mechanobiology as they may be engineered from the ground up, guided by the mechanical parameters present in human arteries and veins, to recapitulate key features of the vasculature. Here, we report extensive validation of a vessel-chip model of endothelial yes-associated protein (YAP) mechanobiology, a protein sensitive to both matrix stiffness and shearing forces and, importantly, implicated in atherosclerotic progression. Our model captures the established endothelial mechanoresponse, with endothelial alignment, elongation, reduction of adhesion molecules, and YAP cytoplasmic retention under high laminar shear. Conversely, we observed disturbed morphology, inflammation, and nuclear partitioning under low, high, and high oscillatory shear. Examining targets of YAP transcriptional co-activation, connective tissue growth factor (CTGF) is strongly downregulated by high laminar shear, whereas it is strongly upregulated by low shear or oscillatory flow. Ankyrin repeat domain 1 (ANKRD1) is only upregulated by high oscillatory shear. Verteporfin inhibition of YAP reduced the expression of CTGF but did not affect ANKRD1. Lastly, substrate stiffness modulated the endothelial shear mechanoresponse. Under high shear, softer substrates showed the lowest nuclear localization of YAP whereas stiffer substrates increased nuclear localization. Low shear strongly increased nuclear localization of YAP across stiffnesses. Together, we have validated a model of endothelial mechanobiology and describe a clinically relevant biological connection between matrix stiffness, shear stress, and endothelial activation via YAP mechanobiology. 
    more » « less
  4. Abstract

    Sickle cell disease (SCD) is the most prevalent inherited blood disorder in the world. But the clinical manifestations of the disease are highly variable. In particular, it is currently difficult to predict the adverse outcomes within patients with SCD, such as, vasculopathy, thrombosis, and stroke. Therefore, for most effective and timely interventions, a predictive analytic strategy is desirable. In this study, we evaluate the endothelial and prothrombotic characteristics of blood outgrowth endothelial cells (BOECs) generated from blood samples of SCD patients with known differences in clinical severity of the disease. We present a method to evaluate patient‐specific vaso‐occlusive risk by combining novel RNA‐seq and organ‐on‐chip approaches. Through differential gene expression (DGE) and pathway analysis we find that BOECs from SCD patients exhibit an activated state through cell adhesion molecule (CAM) and cytokine signaling pathways among many others. In agreement with clinical symptoms of patients, DGE analyses reveal that patient with severe SCD had a greater extent of endothelial activation compared to patient with milder symptoms. This difference is confirmed by performing qRT‐PCR of endothelial adhesion markers like E‐selectin, P‐selectin, tissue factor, and Von Willebrand factor. Finally, the differential regulation of the proinflammatory phenotype is confirmed through platelet adhesion readouts in our BOEC vessel‐chip. Taken together, we hypothesize that these easily blood‐derived endothelial cells evaluated through RNA‐seq and organ‐on‐chips may serve as a biotechnique to predict vaso‐occlusive episodes in SCD patients and will ultimately allow better therapeutic interventions.

     
    more » « less
  5. Abstract Background

    Patients with continuous flow ventricular assist devices (CF‐VADs) are at high risk for non‐surgical bleeding, speculated to associate with the loss of pulsatility following CF‐VAD placement. It has been hypothesized that continuous shear stress causes elongation and increased enzymatic degradation of von Willebrand Factor (vWF), a key player in thrombus formation at sites of vascular damage. However, the role of loss of pulsatility on the unravelling behavior of vWF has not been widely explored.

    Methods

    vWF molecules were immobilized on the surface of microfluidic devices and subjected to various pulsatile flow profiles, including continuous flow and pulsatile flow of different magnitudes,dQ/dt(i.e., first derivative of flow rate) of pulsatility and pulse frequencies to mimic in vivo shear flow environments with and without CF‐VAD support. VWF elongation was observed using total internal reflection fluorescence (TIRF) microscopy. Besides, the vWF level is measured from the patients’ blood sample before and after CF‐VAD implantation from a clinical perspective. To our knowledge, this work is the first in providing direct, visual observation of single vWF molecule extension under controlled‐pulsatile shear flow.

    Results

    Unravelling of vWF (total sample sizen ~ 200 molecules) is significantly reduced under pulsatile flow (p < 0.01) compared to continuous flow. An increase in the magnitude of pulsatility further reduces unravelling lengths, while lower frequency of pulsatility (20 vs. 60 pulses per min) does not have a major effect on the maximum or minimum unravelling lengths. Evaluation of CF‐VAD patient blood samples (n = 13) demonstrates that vWF levels decreased by ~40% following CF‐VAD placement (p < 0.01), which correlates to single‐molecule observations from a clinical point of view.

    Conclusions

    Pulsatile flow reduces unfolding of vWF compared to continuous flow and a lower pulse frequency of 20 pulses/minute yielded comparable vWF unfolding to 60 pulses/minute. These findings could shed light on non‐surgical bleeding associated with the loss of pulsatility following CF‐VAD placement.

     
    more » « less