Machine learning (ML) has shown to be an effective alternative to physical models for quality prediction and process optimization of metal additive manufacturing (AM). However, the inherent “black box” nature of ML techniques such as those represented by artificial neural networks has often presented a challenge to interpret ML outcomes in the framework of the complex thermodynamics that govern AM. While the practical benefits of ML provide an adequate justification, its utility as a reliable modeling tool is ultimately reliant on assured consistency with physical principles and model transparency. To facilitate the fundamental needs, physics-informed machine learning (PIML) has emerged as a hybrid machine learning paradigm that imbues ML models with physical domain knowledge such as thermomechanical laws and constraints. The distinguishing feature of PIML is the synergistic integration of data-driven methods that reflect system dynamics in real-time with the governing physics underlying AM. In this paper, the current state-of-the-art in metal AM is reviewed and opportunities for a paradigm shift to PIML are discussed, thereby identifying relevant future research directions.
more »
« less
Dreaming of Data: Examining Data Augmentation for Machine Learning in Additive Manufacturing
The data generated during additive manufacturing (AM) practice can be used to train machine learning (ML) tools to reduce defects, optimize mechanical properties, or increase efficiency. In addition to the size of the repository, emerging research shows that other characteristics of the data also impact suitability of the data for AM-ML application. What should be done in cases for which the data in too small, too homogeneous, or otherwise insufficient? Data augmentation techniques present a solution, offering automated methods for increasing the quality of data. However, many of these techniques were developed for machine vision tasks, and hence their suitability for AM data has not been verified. In this study, several data augmentation techniques are applied to synthetic design repositories to characterize if and to what degree they enhance their performance as ML training sets. We discuss the comparative advantage of these data augmentation techniques across several canonical AM-ML tasks.
more »
« less
- Award ID(s):
- 2309250
- PAR ID:
- 10496756
- Publisher / Repository:
- Solid Freeform Fabrication Symposium
- Date Published:
- Journal Name:
- 2023 International Solid Freeform Fabrication Symposium
- Format(s):
- Medium: X
- Location:
- Austin, TX, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)With the explosion in Big Data, it is often forgotten that much of the data nowadays is generated at the edge. Specifically, a major source of data is users' endpoint devices like phones, smart watches, etc., that are connected to the internet, also known as the Internet-of-Things (IoT). This "edge of data" faces several new challenges related to hardware-constraints, privacy-aware learning, and distributed learning (both training as well as inference). So what systems and machine learning algorithms can we use to generate or exploit data at the edge? Can network science help us solve machine learning (ML) problems? Can IoT-devices help people who live with some form of disability and many others benefit from health monitoring? In this tutorial, we introduce the network science and ML techniques relevant to edge computing, discuss systems for ML (e.g., model compression, quantization, HW/SW co-design, etc.) and ML for systems design (e.g., run-time resource optimization, power management for training and inference on edge devices), and illustrate their impact in addressing concrete IoT applications.more » « less
-
null (Ed.)Emulating the unique combination of structural, compositional, and functional gradation in natural materials is exceptionally challenging. Many natural structures have proved too complex or expensive to imitate using traditional processing techniques despite recent advances. Recent innovations within the field of additive manufacturing (AM) or 3D Printing (3DP) have shown the ability to create structures that have variations in material composition, structure, and performance, providing a new design-for-manufacturing platform for the imitation of natural materials. AM or 3DP techniques are capable of manufacturing structures that have significantly improved properties and functionality over what could be traditionally-produced, giving manufacturers an edge in their ability to realize components for highly-specialized applications in different industries. To this end, the present work reviews fundamental advances in the use of naturally-inspired design enabled through 3DP / AM, how these techniques can be further exploited to reach new application areas and the challenges that lie ahead for widespread implementation. An example of how these techniques can be applied towards a total hip arthroplasty application is provided to spur further innovation in this area.more » « less
-
In recent years, we have seen increased interest in applying machine learning to system problems. For example, there has been work on applying machine learning to improve query optimization, indexing, storage layouts, scheduling, log-structured merge trees, sorting, compression, and sketches, among many other data management tasks. Arguably, the ideas behind these techniques are similar: machine learning is used to model the data and/or workload in order to derive a more efficient algorithm or data structure. Ultimately, these techniques will allow us to build "instance-optimized" systems: that is, systems that self-adjust to a given workload and data distribution to provide unprecedented performance without the need for tuning by an administrator. While many of these techniques promise orders-of-magnitude better performance in lab settings, there is still general skepticism about how practical the current techniques really are. The following is intended as a progress report on ML for Systems and its readiness for real-world deployments, with a focus on our projects done as part of the Data Systems and AI Lab (DSAIL) at MIT By no means is it a comprehensive overview of all existing work, which has been steadily growing over the past several years not only in the database community but also in the systems, networking, theory, PL, and many other adjacent communities.more » « less
-
Data augmentation is a common practice to help generalization in the procedure of deep model training. In the context of physiological time series classification, previous research has primarily focused on label-invariant data augmentation methods. However, another class of augmentation techniques (i.e., Mixup) that emerged in the computer vision field has yet to be fully explored in the time series domain. In this study, we systematically review the mix-based augmentations, including mixup, cutmix, and manifold mixup, on six physio- logical datasets, evaluating their performance across different sensory data and classification tasks. Our results demonstrate that the three mix-based augmentations can consistently improve the performance on the six datasets. More importantly, the improvement does not rely on expert knowledge or extensive parameter tuning. Lastly, we provide an overview of the unique properties of the mix-based augmentation methods and highlight the potential benefits of using the mix-based augmentation in physiological time series data. Our code and results are available at https://github.com/comp-well-org/ Mix-Augmentation-for-Physiological-Time-Series-Classification.more » « less
An official website of the United States government

