Abstract Recent observations have reported that magnetosonic waves can exhibit rising‐tone structures in the frequency‐time spectrogram. However, the generation mechanism has not been identified yet. In this paper, we investigate the generation of rising‐tone magnetosonic waves in the terrestrial magnetosphere using 1‐D particle‐in‐cell (PIC) simulations, in which the plasma consists of three components: cool electrons, cool protons and ring distribution protons. We find that the magnetosonic waves excited by the ring distribution protons can form a rising‐tone structure with frequency of the structure ranging from about0.5Ωlhto nearlyΩlh, whereΩlhis the lower hybrid frequency. It is further demonstrated that the rising frequency of magnetosonic waves can be accounted for by the scattering of ring distribution protons. Moreover, the rising‐tone timescale obtained by PIC simulation is compared with the satellite observation. Our findings provide some new insights to understand the nonlinear evolution of plasma waves in the Earth's magnetosphere. 
                        more » 
                        « less   
                    
                            
                            Fine Structure of Magnetospheric Magnetosonic Waves: 1. Elementary Rising‐Tone Emissions Within Individual Harmonic
                        
                    
    
            Abstract The present study uncovers the fine structures of magnetosonic waves by investigating the EFW waveforms measured by Van Allen Probes. We show that each harmonic of the magnetosonic wave may consist of a series of elementary rising‐tone emissions, implying a nonlinear mechanism for the wave generation. By investigating an elementary rising‐tone magnetosonic wave that spans a wide frequency range, we show that the frequency sweep rate is likely proportional to the wave frequency. We studied compound rising‐tone magnetosonic waves, and found that they typically consist of multiple harmonics in the source region, and may gradually become continuous in frequency as they propagate away from source. Both elementary and compound rising‐tone magnetosonic waves last for ∼1 min which is close to the bounce period of the ring proton distribution, but their relation is not fully understood. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2247256
- PAR ID:
- 10496850
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 3
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Radiation belt electrons can be accelerated and scattered by magnetosonic waves in the Earth's magnetosphere, and the scattering rate of electrons is sensitive to the wave normal angle. However, observationally it is difficult to identify the wave normal angle within a few degrees. In this study, using 2‐D particle‐in‐cell (PIC) simulations, we investigate the wave normal angle distribution of magnetosonic waves excited by ring distribution protons. Both the linear theory and simulations have shown that the wave normal angles are distributed over a narrow range (82°–89°) with a major peak at about 85° during the linear growth stage when the proton ring velocity is close to the Alfven speed. In addition, 2‐D PIC simulations further demonstrated that the waves tend to have larger wave normal angles (84°–89°) during the saturation stage since the waves with smaller wave normal angles are dissipated faster. It is also found that wave normal angles decrease with the increase of wave frequency. With the increase of the ring velocity of the proton ring distribution, the perpendicular wavenumber of excited magnetosonic waves decreases, which leads to the decrease of the wave normal angle. The simulation results provide a valuable insight to understand the property of magnetosonic waves, and the findings are useful for the global simulations of radiation belt dynamics.more » « less
- 
            Abstract Electromagnetic ion cyclotron (EMIC) waves are commonly observed in the Earth's magnetosphere and play a significant role in regulating relativistic electron fluxes. The waveform of EMIC waves comprises amplitude‐modulated wave packets, known as “subpackets.” Despite their prevalence, the underlying physics and associated particle dynamics for subpacket formation remain poorly understood. In this study, using Van Allen Probe A observations, we present several rising‐tone EMIC wave events to reveal the downward frequency chirping between adjacent subpackets. By performing a hybrid simulation, we demonstrate for the first time that these wave properties are associated with the oscillation of proton holes in the wave gyrophase space induced by cyclotron resonance. The oscillation modulates the energy transfer between waves and particles, establishing a direct link between subpacket formation in cyclotron waves and nonlinear wave‐particle interactions. This new understanding advances our knowledge of subpacket formation in general and its broader implications in space plasma physics.more » « less
- 
            Abstract Rapid shear motion of magnetar crust can launch Alfvén waves into the magnetosphere. The dissipation of the Alfvén waves has been theorized to power the X-ray bursts characteristic of magnetars. However, the process by which Alfvén waves convert their energy to X-rays is unclear. Recent work has suggested that energetic fast magnetosonic (fast) waves can be produced as a byproduct of Alfvén waves propagating on curved magnetic field lines; their subsequent dissipation may power X-ray bursts. In this work, we investigate the production of fast waves by performing axisymmetric force-free simulations of Alfvén waves propagating in a dipolar magnetosphere. For Alfvén wave trains that do not completely fill the flux tube confining them, we find a fast wave dominated by a low frequency component with a wavelength defined by the bouncing time of the Alfvén waves. In contrast, when the wave train is long enough to completely fill the flux tube, and the Alfvén waves overlap significantly, the energy is quickly converted into a fast wave with a higher frequency that corresponds to twice the Alfvén wave frequency. We investigate how the energy, duration, and wavelength of the initial Alfvén wave train affect the conversion efficiency to fast waves. For modestly energetic star quakes, we see that the fast waves that are produced will become nonlinear well within the magnetosphere, and we comment on the X-ray emission that one may expect from such events.more » « less
- 
            Abstract Electron cyclotron harmonic (ECH) waves are known to precipitate plasma sheet electrons into the upper atmosphere and generate diffuse aurorae. In this study, we report quasiperiodic rising (3 events) and falling tone (22 events) ECH waves observed by Van Allen Probes and evaluate their properties. These rising and falling tone ECH waves prefer to occur during quiet geomagnetic conditions over the dusk to midnight sector in relatively high‐density (10–80 cm−3) regions. Their repetition periods increase with increasingLshell atL < 6, ranging from ∼60 to 110 s. The wave element duration varies from 10 to 130 s peaking at ∼40 s and the chirping rate peaks at ∼50 (∼−50) Hz/s for rising (falling) tones. Our findings reveal intriguing features of the ECH wave properties, which provide new insights into their generation and potential effects on electron precipitation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
