skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Which Vegetation Index? Benchmarking Multispectral Metrics to Hyperspectral Mixture Models in Diverse Cropland
The monitoring of agronomic parameters like biomass, water stress, and plant health can benefit from synergistic use of all available remotely sensed information. Multispectral imagery has been used for this purpose for decades, largely with vegetation indices (VIs). Many multispectral VIs exist, typically relying on a single feature—the spectral red edge—for information. Where hyperspectral imagery is available, spectral mixture models can use the full VSWIR spectrum to yield further insight, simultaneously estimating area fractions of multiple materials within mixed pixels. Here we investigate the relationships between VIs and mixture models by comparing hyperspectral endmember fractions to six common multispectral VIs in California’s diverse crops and soils. In so doing, we isolate spectral effects from sensor- and acquisition-specific variability associated with atmosphere, illumination, and view geometry. Specifically, we compare: (1) fractional area of photosynthetic vegetation (Fv) from 64,000,000 3–5 m resolution AVIRIS-ng reflectance spectra; and (2) six popular VIs (NDVI, NIRv, EVI, EVI2, SR, DVI) computed from simulated Planet SuperDove reflectance spectra derived from the AVIRIS-ng spectra. Hyperspectral Fv and multispectral VIs are compared using both parametric (Pearson correlation, ρ) and nonparametric (Mutual Information, MI) metrics. Four VIs (NIRv, DVI, EVI, EVI2) showed strong linear relationships with Fv (ρ > 0.94; MI > 1.2). NIRv and DVI showed strong interrelation (ρ > 0.99, MI > 2.4), but deviated from a 1:1 correspondence with Fv. EVI and EVI2 were strongly interrelated (ρ > 0.99, MI > 2.3) and more closely approximated a 1:1 relationship with Fv. In contrast, NDVI and SR showed a weaker, nonlinear, heteroskedastic relation to Fv (ρ < 0.84, MI = 0.69). NDVI exhibited both especially severe sensitivity to unvegetated background (–0.05 < NDVI < +0.6) and saturation (0.2 < Fv < 0.8 for NDVI = 0.7). The self-consistent atmospheric correction, radiometry, and sun-sensor geometry allows this simulation approach to be further applied to indices, sensors, and landscapes worldwide.  more » « less
Award ID(s):
2226649
PAR ID:
10497004
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Remote Sensing
Volume:
15
Issue:
4
ISSN:
2072-4292
Page Range / eLocation ID:
971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest. 
    more » « less
  2. Salt marshes are highly productive ecosystems relevant for Blue Carbon assessments, but information for estimating gross primary productivity (GPP) from proximal remote sensing (PRS) is limited. Temperate salt marshes have seasonal canopy structure and metabolism changes, defining different canopy phenological phases, GPP rates, and spectral reflectance. We combined multi-annual PRS data (i.e., PhenoCam, discrete hyperspectral measurements, and automated spectral reflectance sensors) with GPP derived from eddy covariance. We tested the performance of empirical models to predict GPP from 12 common vegetation indices (VIs; e.g., NDVI, EVI, PSRI, GCC), Sun-Induced Fluorescence (SIF), and reflectance from different areas of the electromagnetic spectrum (i.e., VIS-IR, RedEdge, IR, and SIF) across the annual cycle and canopy phenological phases (i.e., Greenup, Maturity, Senescence, and Dormancy). Plant Senescence Reflectance Index (PSRI) from hyperspectral data and the Greenness Index (GCC) from PhenoCam, showed the strongest relationship with daily GPP across the annual cycle and within phenological phases (r2=0.30–0.92). Information from the visible-infrared electromagnetic region (VIS-IR) coupled with a partial least square approach (PLSR) showed the highest data-model agreement with GPP, mainly because of its relevance to respond to physiological and structural changes in the canopy, compared with indices (e.g., GCC) that particularly react to changes in the greenness of the canopy. The most relevant electromagnetic regions to model GPP were ∼550 nm and ∼710 nm. Canopy phenological phases impose challenges for modeling GPP with VIs and the PLSR approach, particularly during Maturity, Senescence, and Dormancy. As more eddy covariance sites are established in salt marshes, the application of PRS can be widely tested. Our results highlight the potential to use canopy reflectance from the visible spectrum region for modeling annual GPP in salt marshes as an example of advances within the AmeriFlux network. 
    more » « less
  3. Abstract This study uses a small unmanned aircraft system equipped with a multispectral sensor to assess various vegetation indices (VIs) for their potential to monitor iron deficiency chlorosis (IDC) in a grain sorghum (Sorghum bicolorL.) crop. IDC is a nutritional disorder that stunts a plants’ growth and causes its leaves to yellow due to an iron deficit. The objective of this project is to find the best VI to detect and monitor IDC. A series of flights were completed over the course of the growing season and processed using Structure‐from‐Motion photogrammetry to create orthorectified, multispectral reflectance maps in the red, green, red‐edge, and near‐infrared wavelengths. Ground data collection methods were used to analyze stress, chlorophyll levels, and grain yield, correlating them to the multispectral imagery for ground control and precise crop examination. The reflectance maps and soil‐removed reflectance maps were used to calculate 25 VIs whose separability was then calculated using a two‐class distance measure, determining which contained the largest separation between the pixels representing IDC and healthy vegetation. The field‐acquired data were used to conclude which VIs achieved the best results for the dataset as a whole and at each level of IDC (low, moderate, and severe). It was concluded that the MERIS terrestrial chlorophyll index, normalized difference red‐edge, and normalized green (NG) indices achieved the highest amount of separation between plants with IDC and healthy vegetation, with the NG reaching the highest levels of separability for both soil‐included and soil‐removed VIs. 
    more » « less
  4. Drone-based multispectral sensing is a valuable tool for dryland spatial ecology, yet there has been limited investigation of the reproducibility of measurements from drone-mounted multispectral camera array systems or the intercomparison between drone-derived measurements, field spectroscopy, and satellite data. Using radiometrically calibrated data from two multispectral drone sensors (MicaSense RedEdge (MRE) and Parrot Sequoia (PS)) co-located with a transect of hyperspectral measurements (tramway) in the Chihuahuan desert (New Mexico, USA), we found a high degree of correspondence within individual drone data sets, but that reflectance measurements and vegetation indices varied between field, drone, and satellite sensors. In comparison to field spectra, MRE had a negative bias, while PS had a positive bias. In comparison to Sentinel-2, PS showed the best agreement, while MRE had a negative bias for all bands. A variogram analysis of NDVI showed that ecological pattern information was lost at grains coarser than 1.8 m, indicating that drone-based multispectral sensors provide information at an appropriate spatial grain to capture the heterogeneity and spectral variability of this dryland ecosystem in a dry season state. Investigators using similar workflows should understand the need to account for biases between sensors. Modelling spatial and spectral upscaling between drone and satellite data remains an important research priority. 
    more » « less
  5. Abstract Background Remote sensing instruments enable high-throughput phenotyping of plant traits and stress resilience across scale. Spatial (handheld devices, towers, drones, airborne, and satellites) and temporal (continuous or intermittent) tradeoffs can enable or constrain plant science applications. Here, we describe the technical details of TSWIFT (Tower Spectrometer on Wheels for Investigating Frequent Timeseries), a mobile tower-based hyperspectral remote sensing system for continuous monitoring of spectral reflectance across visible-near infrared regions with the capacity to resolve solar-induced fluorescence (SIF). Results We demonstrate potential applications for monitoring short-term (diurnal) and long-term (seasonal) variation of vegetation for high-throughput phenotyping applications. We deployed TSWIFT in a field experiment of 300 common bean genotypes in two treatments: control (irrigated) and drought (terminal drought). We evaluated the normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), and SIF, as well as the coefficient of variation (CV) across the visible-near infrared spectral range (400 to 900 nm). NDVI tracked structural variation early in the growing season, following initial plant growth and development. PRI and SIF were more dynamic, exhibiting variation diurnally and seasonally, enabling quantification of genotypic variation in physiological response to drought conditions. Beyond vegetation indices, CV of hyperspectral reflectance showed the most variability across genotypes, treatment, and time in the visible and red-edge spectral regions. Conclusions TSWIFT enables continuous and automated monitoring of hyperspectral reflectance for assessing variation in plant structure and function at high spatial and temporal resolutions for high-throughput phenotyping. Mobile, tower-based systems like this can provide short- and long-term datasets to assess genotypic and/or management responses to the environment, and ultimately enable the spectral prediction of resource-use efficiency, stress resilience, productivity and yield. 
    more » « less