skip to main content


This content will become publicly available on March 1, 2025

Title: Underwater double vortex generation using 3D printed acoustic lens and field multiplexing

The generation of acoustic vortex beams has attracted an increasing amount of research attention in recent years, offering a range of functions, including acoustic communication, particle manipulation, and biomedical ultrasound. However, incorporating more vortices and broadening the capacity of these beams and associated devices in three dimensions pose challenges. Traditional methods often necessitate complex transducer arrays and are constrained by conditions such as system complexity and the medium in which they operate. In this paper, a 3D printed acoustic lens capable of generating a double vortex pattern with an optional focusing profile in water was demonstrated. The performance of the proposed lens was evaluated through computational simulations using finite element analysis and experimental tests based on underwater measurements. The results indicate that by altering the positioning of the vortices’ axes, it is possible to control both the intensity and the location of the pressurized zone. The proposed approach shows promise for enhancing the effectiveness and versatility of various applications by generating a larger number of vortices and freely tailoring the focal profile with a single lens, thereby expanding the practical uses of acoustic vortex technology.

 
more » « less
Award ID(s):
2137749 2243507 2243506
PAR ID:
10497147
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
APL Materials
Volume:
12
Issue:
3
ISSN:
2166-532X
Page Range / eLocation ID:
031130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Light beams carrying orbital angular momentum (OAM) in the form of optical vortices have attracted great interest due to their capability for providing a new dimension and approach to manipulate light–matter interactions. Recently, plasmonics has offered efficient ways to focus vortex beams beyond the diffraction limit. However, unlike in the visible and near‐infrared regime, it is still a big challenge to realize plasmonic vortices at far‐infrared and even longer wavelengths. An effective strategy to create deep‐subwavelength near‐field electromagnetic (EM) vortices operating in the low frequency region is proposed. Taking advantage of the asymmetric spatial distribution of EM field supported by a metallic comb‐shaped waveguide, plasmonic vortex modes that are strongly confined in a well‐designed deep‐subwavelength meta‐particle with desired topological charges can be excited. Such unique phenomena are confirmed by the microwave experiments. An equivalent physical model backed up by the numerical simulations is performed to reveal the underlying mechanism of the plasmonic vortex generation. This spoof‐plasmon assisted focusing of EM waves with OAM may find potentials for functional integrated elements and devices operating in the microwave, terahertz, and even far‐infrared regions.

     
    more » « less
  2. Abstract

    The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the way to many promising applications related to spin-to-orbital angular momentum conversion, spin-orbit hybrid entanglement, particle manipulation and transportation, and optical communication.

     
    more » « less
  3. Abstract

    Stemming from bound states in the continuum (BICs), momentum‐space polarization vortices observed in photonic structures provide an attractive approach to generating optical vortex (OV) beams. On the other hand, dominated by the selection rules, the harmonic generation from nanostructures exhibits a nonlinear geometric phase that depends on both the harmonic orders and the handedness of circularly polarized harmonic signals. Here, the third‐ and fifth‐harmonic optical vortex generation from an amorphous silicon photonic crystal slab, supporting the guided resonance associated with BICs at near infrared wavelengths, is numerically demonstrated. The results show that, determined by the nonlinearity phase, the topological charge (l) associated with thenth‐harmonic OV beams follows σ(n∓1)q, whereqis the polarization charge of the BIC and the ∓ sign represents the opposite or same polarization of thenth‐harmonic signal relative to the circular polarization state (σ) of the fundamental waves. Exploiting harmonic multiplexing, this approach can significantly improve the channel capacity of OV generators based on topologically protected optical BICs.

     
    more » « less
  4. Abstract

    Since the late 19thcentury, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in this area have focused on the mechanisms and dynamics of polarization‐dependent single plasmonic vortex generation and evolution, while the interference between different plasmonic vortices for practical applications has been unexplored. Here, a method for flexible on‐chip spin‐to‐orbital angular momentum conversion is introduced, resulting in exotic interferograms. Based on this method, a new form of interferometers that is realized by the interference between customized plasmonic vortices is demonstrated. Within wavelength‐scale dimension, the proposed plasmonic vortex interferometers exhibit superior performance to directly measure the polarization state, spin and orbital angular momentum of incident beams. The proposed interferometry is straightforward and robust, and can be expected to be applied to different scenarios, fueling fundamental advances and applications alike.

     
    more » « less
  5. null (Ed.)
    Wave fields with orbital angular momentum (OAM) have been widely investigated in metasurfaces. By engineering acoustic metasurfaces with phase gradient elements, phase twisting is commonly used to obtain acoustic OAM. However, it has limited ability to manipulate sound vortices, and a more powerful mechanism for sound vortex manipulation is strongly desired. Here, we propose the diffraction mechanism to manipulate sound vortices in a cylindrical waveguide with phase gradient metagratings (PGMs). A sound vortex diffraction law is theoretically revealed based on the generalized conservation principle of topological charge. This diffraction law can explain and predict the complicated diffraction phenomena of sound vortices, as confirmed by numerical simulations. To exemplify our findings, we designed and experimentally verified a PGM based on Helmholtz resonators that support asymmetric transmission of sound vortices. Our work provides previously unidentified opportunities for manipulating sound vortices, which can advance more versatile design for OAM-based devices. 
    more » « less