skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A nonneural miRNA cluster mediates hearing via repression of two neural targets
We show here thatmir-279/996are absolutely essential for development and function of Johnston's organ (JO), the primary proprioceptive and auditory organ inDrosophila. Their deletion results in highly aberrant cell fate determination, including loss of scolopale cells and ectopic neurons, and mutants are electrophysiologically deaf. In vivo activity sensors and mosaic analyses indicate that these seed-related miRNAs function autonomously to suppress neural fate in nonneuronal cells. Finally, genetic interactions pinpoint two neural targets (elavandinsensible) that underlie miRNA mutant JO phenotypes. This work uncovers how critical post-transcriptional regulation of specific miRNA targets governs cell specification and function of the auditory system.  more » « less
Award ID(s):
2037828
PAR ID:
10497161
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Cold Spring Harbor Laboratory Press
Date Published:
Journal Name:
Genes & Development
Volume:
37
Issue:
21-24
ISSN:
0890-9369
Page Range / eLocation ID:
1041 to 1051
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Lim1 transcription factor is required in Drosophila for patterning the eye-antennal disk. At the adult stage, Lim1 is strongly expressed in Johnston’s Organ (JO) neurons, the antennal auditory organ. Using RNAi-mediated knockdown of Lim1 using a strong neuronal driver, we find a significant reduction in electrophysiological responses to auditory stimuli, recorded from the antennal nerve. This reduction can be accounted for by Lim1 knockdown in the auditory subset of JO neurons, with no effect of knockdown in JO neuron subsets associated with wind or gravity detection. Conversely, Lim1 knockdown in JO sense organ precursors had no effect on hearing. Mosaic animals with antennal clones of the Lim1E9 null mutation showed morphological defects in the antenna, and significant auditory electrophysiological defects. Our results are consistent with two distinct functions for Lim1 in the antenna, including an early patterning function in the eye-antennal disk, and a later neural differentiation function in the JO neurons. 
    more » « less
  2. Abstract BackgroundAnopheles gambiaedensovirus (AgDNV) is a highly species-specific parvovirus that reaches high titers in adultAnopheles gambiaemosquitoes with few transcriptomic effects and minimal significant fitness effects. Given these characteristics, AgDNV has been proposed as a viral vector for basic research and mosquito control. Previous work created an AgDNV co-expression system with a wild-type AgDNV helper plasmid and a transducing plasmid expressing enhanced green fluorescent protein (EGFP) that can be used to co-transfect cells to generate infectious recombinant transducing AgDNV virions. Generated virions infect theAn. gambiaemidgut, fat body, and ovaries, yet this viral vector system is limited in the size of transgenes that can be expressed due to capsid packaging limitations. MethodsConsidering these size constraints, we created an artificial intron within the EGFP gene of the transducing construct that can express small pieces of genetic material such as microRNAs (miRNAs), microRNA sponges, or other small sequences. Placement of this intron in EGFP created a fluorescent reporter such that incorrect splicing produces a frameshift mutation in EGFP and an early stop codon, whereas correct splicing results in normal EGFP expression and co-transcription of the intronic genetic cargo. A selection of miRNAs with predicted or demonstrated importance in mosquito immunity and reproduction with expression localized to the fat body or ovaries were chosen as intronic cargo. Construct expression and splicing was evaluated, and the impact of miRNA expression on putative miRNA targets was measuredin vitroandin vivo. ResultsThe created intron was correctly spliced in cells and mosquitoes; however, miRNA delivery resulted in inconsistent changes to miRNA and predicted target gene transcript levels—possibly due to organ-specific miRNA expression or inaccurate putative target predictions leading to miRNA–target gene sequence mismatch. ConclusionsAlthough our results on target gene expression were inconsistent, with optimization this viral vector and developed intron have potential as an expression tool withinAn. gambiaemosquitoes or cell lines. Graphical Abstract 
    more » « less
  3. IntroductionCilia biogenesis relies on intraflagellar transport (IFT), a conserved transport mechanism which functions bi-directionally to bring protein complexes to the growing ciliary tip and recycle signaling and transport proteins between the cilium and cell body. InDrosophila, anterograde IFT is critical for assembly of sensory cilia in the neurons of both chordotonal (ch) organs, which have relatively long ciliary axonemes, and external sensory (es) organs, which have short axonemal segments with microtubules in distal sensory segments forming non-axonemal bundles. We previously isolated thebeethoven(btv) mutant in a mutagenesis screen for auditory mutants. Although manybtvmutant flies are deaf, some retain a small residual auditory function as determined both by behavior and by auditory electrophysiology. ResultsHere we molecularly characterize thebtvgene and demonstrate that it encodes the IFT-associated dynein-2 heavy chain Dync2h1. We also describe morphological changes in Johnston’s organ as flies age to 30 days, and we find that morphological and electrophysiological phenotypes in this ch organ ofbtvmutants become more severe with age. We show that NompB protein, encoding the conserved IFT88 protein, an IFT complex B component, fails to be cleared from chordotonal cilia inbtvmutants, instead accumulating in the distorted cilia. In macrochaete bristles, a class of es organ,btvmutants show a 50% reduction in mechanoreceptor potentials. DiscussionThus, thebtv-encoded Dync2h1 functions as the retrograde IFT motor in the assembly of long ciliary axonemes in ch organs and is also important for normal function of the short ciliary axonemes in es organs. 
    more » « less
  4. Abstract A fundamental goal in the organogenesis field is to understand how cells organize into tubular shapes. Toward this aim, we have established the hydro-vascular organ in the sea starPatiria miniataas a model for tubulogenesis. In this animal, bilateral tubes grow out from the tip of the developing gut, and precisely extend to specific sites in the larva. This growth involves cell migration coupled with mitosis in distinct zones. Cell proliferation requires FGF signaling, whereas the three-dimensional orientation of the organ depends on Wnt signaling. Specification and maintenance of tube cell fate requires Delta/Notch signaling. Moreover, we identify target genes of the FGF pathway that contribute to tube morphology, revealing molecular mechanisms for tube outgrowth. Finally, we report that FGF activates the Six1/2 transcription factor, which serves as an evolutionarily ancient regulator of branching morphogenesis. This study uncovers distinct mechanisms of tubulogenesis in vivo and we propose that cellular dynamics in the sea star hydro-vascular organ represents a key comparison for understanding the evolution of vertebrate organs. 
    more » « less
  5. null (Ed.)
    Schistosomiasis is a neglected tropical disease that infects 240 million people. With no vaccines and only one drug available, new therapeutic targets are needed. The causative agents, schistosomes, are intravascular flatworm parasites that feed on blood and lay eggs, resulting in pathology. The function of the parasite's various tissues in successful parasitism are poorly understood, hindering identification of therapeutic targets. Using single-cell RNA sequencing (RNA-seq), we characterize 43,642 cells from the adult schistosome and identify 68 distinct cell populations, including specialized stem cells that maintain the parasite's blood-digesting gut. These stem cells express the gene hnf4, which is required for gut maintenance, blood feeding, and pathology in vivo. Together, these data provide molecular insights into the organ systems of this important pathogen and identify potential therapeutic targets. 
    more » « less