skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating the Alaska Blocking Index as an indicator of wildfire potential in Alaska's central eastern interior
Abstract Increased Arctic air temperatures and evaporative fluxes have coincided with more frequent and destructive high‐latitude wildfires. Arctic fires impact ecosystems and people, especially at the community‐level by degrading air quality, destroying agriculture, and threatening life and property. Central Eastern Interior (CEI) Alaska is one such region that has recently experienced the effects of wildfire activity related to warming air temperatures. To improve our ability to identify fire weather events and assess their potential for extreme outbreaks at actionable lead times relevant to fire weather forecasters and managers, new metrics and approaches need to be established and applied toward understanding the physical mechanisms underlying such wildland fire characteristics. Our study uses a new, regional atmospheric circulation metric, the Alaska Blocking Index (ABI), to describe midtropospheric air pressure around Alaska, which is subsequently related to CEI fire weather conditions at the Predictive Service Area (PSA) scale in climatological and extreme events frameworks. Of note, during years of high fire activity, Build‐Up Index (BUI) values tend to be anomalously high during the duff and drought phases across the CEI PSAs, though comparatively lower BUI values are still associated with high fire activity in the Tanana Zone‐South (AK03S) PSA. Likewise, extreme BUI values are strongly tied to high ABI values and well‐defined upper‐air ridging circulation patterns in the duff and drought periods. The statistical skill of mean daily ABI values in the 6–10 day period preceding extreme duff period BUI values is modest (τ2 > 14%) in the Upper Yukon Valley (AK02) PSA, a hotbed of wildland fire activity. Extremes in ABI and CEI BUI often occur in tandem, yielding regional predictability of upper‐air weather patterns and extremes and underlying surface weather conditions, by statistical and/or dynamical forecast models, imperative for local community and governmental organizations to effectively manage and allocate Alaska's fire weather resources.  more » « less
Award ID(s):
1757348
PAR ID:
10497311
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
44
Issue:
7
ISSN:
0899-8418
Format(s):
Medium: X Size: p. 2230-2245
Size(s):
p. 2230-2245
Sponsoring Org:
National Science Foundation
More Like this
  1. Research Highlights: Flammability of wildland fuels is a key factor influencing risk-based decisions related to preparedness, response, and safety in Alaska. However, without effective measures of current and expected flammability, the expected likelihood of active and problematic wildfires in the future is difficult to assess and prepare for. This study evaluates the effectiveness of diverse indices to capture high-risk fires. Indicators of drought and atmospheric drivers are assessed along with the operational Canadian Forest Fire Danger Rating System (CFFDRS). Background and Objectives: In this study, 13 different indicators of atmospheric conditions, fuel moisture, and flammability are compared to determine how effective each is at identifying thresholds and trends for significant wildfire activity. Materials and Methods: Flammability indices are compared with remote sensing characterizations that identify where and when fire activity has occurred. Results: Among these flammability indicators, conventional tools calibrated to wildfire thresholds (Duff Moisture Code (DMC) and Buildup Index (BUI)), as well as measures of atmospheric forcing (Vapor Pressure Deficit (VPD)), performed best at representing the conditions favoring initiation and size of significant wildfire events. Conventional assessments of seasonal severity and overall landscape flammability using DMC and BUI can be continued with confidence. Fire models that incorporate BUI in overall fire potential and fire behavior assessments are likely to produce effective results throughout boreal landscapes in Alaska. One novel result is the effectiveness of VPD throughout the state, making it a potential alternative to FFMC among the short-lag/1-day indices. Conclusions: This study demonstrates the societal value of research that joins new academic research results with operational needs. Developing the framework to do this more effectively will bring science to action with a shorter lag time, which is critical as we face growing challenges from a changing climate. 
    more » « less
  2. Abstract Wildfire risk is greatest during high winds after sustained periods of dry and hot conditions. This paper is a statistical extreme-event risk attribution study that aims to answer whether extreme wildfire seasons are more likely now than under past climate. This requires modeling temporal dependence at extreme levels. We propose the use of transformed-linear time series models, which are constructed similarly to traditional autoregressive–moving-average (ARMA) models while having a dependence structure that is tied to a widely used framework for extremes (regular variation). We fit the models to the extreme values of the seasonally adjusted fire weather index (FWI) time series to capture the dependence in the upper tail for past and present climate. We simulate 10 000 fire seasons from each fitted model and compare the proportion of simulated high-risk fire seasons to quantify the increase in risk. Our method suggests that the risk of experiencing an extreme wildfire season in Grand Lake, Colorado, under current climate has increased dramatically relative to the risk under the climate of the mid-twentieth century. Our method also finds some evidence of increased risk of extreme wildfire seasons in Quincy, California, but large uncertainties do not allow us to reject a null hypothesis of no change. 
    more » « less
  3. null (Ed.)
    Abstract In this study, detailed characteristics of the leading intraseasonal variability mode of boreal winter surface air temperature (SAT) over the North American (NA) sector are investigated. This intraseasonal SAT mode, characterized by two anomalous centers with an opposite sign—one over central NA and another over east Siberia (ES)/Alaska—bears a great resemblance to the “warm Arctic–cold continent” pattern of the interannual SAT variability over NA. This intraseasonal SAT mode and associated circulation exert a pronounced influence on regional weather extremes, including precipitation over the northwest coast of NA, sea ice concentration over the Chukchi and Bering Seas, and extreme warm and cold events over the NA continent and Arctic region. Surface warming and cooling signals of the intraseasonal SAT mode are connected to temperature anomalies in a deep-tropospheric layer up to 300 hPa with a decreasing amplitude with altitude. Particularly, a coupling between the troposphere and stratosphere is found during evolution of the intraseasonal SAT variability, although whether the stratospheric processes are essential in sustaining the leading intraseasonal SAT mode is difficult to determine based on observations alone. Two origins of wave sources are identified in contributing to vertically propagating planetary waves near Alaska: one over ES/Alaska associated with local intraseasonal variability and another from the subtropical North Pacific via Rossby wave trains induced by tropical convective activity over the western Pacific, possibly associated with the Madden–Julian oscillation. 
    more » « less
  4. Abstract Previous research has examined individual factors contributing to wildfire risk, but the compounding effects of these factors remain underexplored. Here, we introduce the “Integrated Human-centric Wildfire Risk Index (IHWRI)” to quantify the compounding effects of fire-weather intensification and anthropogenic factors—including ignitions and human settlement into wildland—on wildfire risk. While climatic trends increased the frequency of high-risk fire-weather by 2.5-fold, the combination of this trend with wildland-urban interface expansion led to a 4.1-fold increase in the frequency of conditions conducive to extreme-impact wildfires from 1990 to 2022 across California. More than three-quarters of extreme-impact wildfires—defined as the top 20 largest, most destructive, or deadliest events on record—originated within 1 km from the wildland-urban interface. The deadliest and most destructive wildfires—90% of which were human-caused—primarily occurred in the fall, while the largest wildfires—56% of which were human-caused—mostly took place in the summer. By integrating human activity and climate change impacts, we provide a holistic understanding of human-centric wildfire risk, crucial for policy development. 
    more » « less
  5. null (Ed.)
    The late-season extreme fire activity in Southcentral Alaska during 2019 was highly unusual and consequential. Firefighting operations had to be extended by a month in 2019 due to the extreme conditions of hot summer temperature and prolonged drought. The ongoing fires created poor air quality in the region containing most of Alaska’s population, leading to substantial impacts to public health. Suppression costs totaled over $70 million for Southcentral Alaska. This study’s main goals are to place the 2019 season into historical context, provide an attribution analysis, and assess future changes in wildfire risk in the region. The primary tools are meteorological observations and climate model simulations from the NCAR CESM Large Ensemble (LENS). The 2019 fire season in Southcentral Alaska included the hottest and driest June–August season over the 1979–2019 period. The LENS simulation analysis suggests that the anthropogenic signal of increased fire risk had not yet emerged in 2019 because of the CESM’s internal variability, but that the anthropogenic signal will emerge by the 2040–2080 period. The effect of warming temperatures dominates the effect of enhanced precipitation in the trend towards increased fire risk. 
    more » « less