skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting 5‐year dementia conversion in veterans with mild cognitive impairment
Abstract INTRODUCTIONIdentifying mild cognitive impairment (MCI) patients at risk for dementia could facilitate early interventions. Using electronic health records (EHRs), we developed a model to predict MCI to all‐cause dementia (ACD) conversion at 5 years. METHODSCox proportional hazards model was used to identify predictors of ACD conversion from EHR data in veterans with MCI. Model performance (area under the receiver operating characteristic curve [AUC] and Brier score) was evaluated on a held‐out data subset. RESULTSOf 59,782 MCI patients, 15,420 (25.8%) converted to ACD. The model had good discriminative performance (AUC 0.73 [95% confidence interval (CI) 0.72–0.74]), and calibration (Brier score 0.18 [95% CI 0.17–0.18]). Age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors, while body mass index, alcohol abuse, and sleep apnea were protective factors. DISCUSSIONEHR‐based prediction model had good performance in identifying 5‐year MCI to ACD conversion and has potential to assist triaging of at‐risk patients. HighlightsOf 59,782 veterans with mild cognitive impairment (MCI), 15,420 (25.8%) converted to all‐cause dementia within 5 years.Electronic health record prediction models demonstrated good performance (area under the receiver operating characteristic curve 0.73; Brier 0.18).Age and vascular‐related morbidities were predictors of dementia conversion.Synthetic data was comparable to real data in modeling MCI to dementia conversion. Key PointsAn electronic health record–based model using demographic and co‐morbidity data had good performance in identifying veterans who convert from mild cognitive impairment (MCI) to all‐cause dementia (ACD) within 5 years.Increased age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors for 5‐year conversion from MCI to ACD.High body mass index, alcohol abuse, and sleep apnea were protective factors for 5‐year conversion from MCI to ACD.Models using synthetic data, analogs of real patient data that retain the distribution, density, and covariance between variables of real patient data but are not attributable to any specific patient, performed just as well as models using real patient data. This could have significant implications in facilitating widely distributed computing of health‐care data with minimized patient privacy concern that could accelerate scientific discoveries.  more » « less
Award ID(s):
2124127
PAR ID:
10497313
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring
Volume:
16
Issue:
1
ISSN:
2352-8729
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction:Estimating the effects of comorbidities on risk of all-cause dementia (ACD) could potentially better inform prevention strategies and identify novel risk factors compared to more common post-hoc analyses from predictive modeling. Methods:In a retrospective cohort study of patients with mild cognitive impairment (MCI) from US Veterans Affairs Medical Centers between 2009 and 2021, we used machine learning techniques from the treatment effect estimation literature to estimate individualized effects of 25 comorbidities (e.g., hypertension) on ACD risk within 10 years of MCI diagnosis. Age and healthcare utilization were adjusted for using exact matching. Results:After matching, of 19,797 MCI patients, 6,767 (34.18%) experienced ACD onset. Dyslipidemia (percentage point increase of ACD risk range across different treatment effect estimation techniques = 0.009–0.044), hypertension (range = 0.007–0.043), and diabetes (range = 0.007–0.191) consistently had non-zero average effects. Discussion:Our findings support known associations between dyslipidemia, hypertension, and diabetes that increase the risk of ACD in MCI patients, demonstrating the potential for these approaches to identify novel risk factors. 
    more » « less
  2. Abstract INTRODUCTIONIdentification of individuals with mild cognitive impairment (MCI) who are at risk of developing Alzheimer's disease (AD) is crucial for early intervention and selection of clinical trials. METHODSWe applied natural language processing techniques along with machine learning methods to develop a method for automated prediction of progression to AD within 6 years using speech. The study design was evaluated on the neuropsychological test interviews ofn = 166 participants from the Framingham Heart Study, comprising 90 progressive MCI and 76 stable MCI cases. RESULTSOur best models, which used features generated from speech data, as well as age, sex, and education level, achieved an accuracy of 78.5% and a sensitivity of 81.1% to predict MCI‐to‐AD progression within 6 years. DISCUSSIONThe proposed method offers a fully automated procedure, providing an opportunity to develop an inexpensive, broadly accessible, and easy‐to‐administer screening tool for MCI‐to‐AD progression prediction, facilitating development of remote assessment. HighlightsVoice recordings from neuropsychological exams coupled with basic demographics can lead to strong predictive models of progression to dementia from mild cognitive impairment.The study leveraged AI methods for speech recognition and processed the resulting text using language models.The developed AI‐powered pipeline can lead to fully automated assessment that could enable remote and cost‐effective screening and prognosis for Alzehimer's disease. 
    more » « less
  3. Abstract BACKGROUNDLimited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians. METHODSVascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally. RESULTSBaseline analyses revealed that amyloid‐negative (Aβ–) cognitively normal (CN) individuals with high FRS had lower cognition compared to Aβ– CN individuals with low FRS (p < 0.0001). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups. CONCLUSIONOur findings indicate that managing vascular risk may be crucial in preserving cognition in Aβ– individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid‐positive individuals had worse cognitive performance than Aβ– individuals. HighlightsVascular risk significantly affects cognition in amyloid‐negative older Koreans.Amyloid‐negative CN older adults with high vascular risk had lower baseline cognition.Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk.The study underscores the impact of vascular health on the AD disease spectrum. 
    more » « less
  4. Abstract INTRODUCTIONAlzheimer's disease (AD) initiates years prior to symptoms, underscoring the importance of early detection. While amyloid accumulation starts early, individuals with substantial amyloid burden may remain cognitively normal, implying that amyloid alone is not sufficient for early risk assessment. METHODSGiven the genetic susceptibility of AD, a multi‐factorial pseudotime approach was proposed to integrate amyloid imaging and genotype data for estimating a risk score. Validation involved association with cognitive decline and survival analysis across risk‐stratified groups, focusing on patients with mild cognitive impairment (MCI). RESULTSOur risk score outperformed amyloid composite standardized uptake value ratio in correlation with cognitive scores. MCI subjects with lower pseudotime risk score showed substantial delayed onset of AD and slower cognitive decline. Moreover, pseudotime risk score demonstrated strong capability in risk stratification within traditionally defined subgroups such as early MCI, apolipoprotein E (APOE) ε4+ MCI,APOEε4– MCI, and amyloid+ MCI. DISCUSSIONOur risk score holds great potential to improve the precision of early risk assessment. HighlightsAccurate early risk assessment is critical for the success of clinical trials.A new risk score was built from integrating amyloid imaging and genetic data.Our risk score demonstrated improved capability in early risk stratification. 
    more » « less
  5. Abstract BackgroundAlzheimer’s Disease (AD) is a widespread neurodegenerative disease with Mild Cognitive Impairment (MCI) acting as an interim phase between normal cognitive state and AD. The irreversible nature of AD and the difficulty in early prediction present significant challenges for patients, caregivers, and the healthcare sector. Deep learning (DL) methods such as Recurrent Neural Networks (RNN) have been utilized to analyze Electronic Health Records (EHR) to model disease progression and predict diagnosis. However, these models do not address some inherent irregularities in EHR data such as irregular time intervals between clinical visits. Furthermore, most DL models are not interpretable. To address these issues, we developed a novel DL architecture called Time‐Aware RNN (TA‐RNN) to predict MCI to AD conversion at the next clinical visit. MethodTA‐RNN comprises of a time embedding layer, attention‐based RNN, and prediction layer based on multi‐layer perceptron (MLP) (Figure 1). For interpretability, a dual‐level attention mechanism within the RNN identifies significant visits and features impacting predictions. TA‐RNN addresses irregular time intervals by incorporating time embedding into longitudinal cognitive and neuroimaging data based on attention weights to create a patient embedding. The MLP, trained on demographic data and the patient embedding predicts AD conversion. TA‐RNN was evaluated on Alzheimer’s Disease Neuroimaging Initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC) datasets based on F2 score and sensitivity. ResultMultiple TA‐RNN models were trained with two, three, five, or six visits to predict the diagnosis at the next visit. In one setup, the models were trained and tested on ADNI. In another setup, the models were trained on the entire ADNI dataset and evaluated on the entire NACC dataset. The results indicated superior performance of TA‐RNN compared to state‐of‐the‐art (SOTA) and baseline approaches for both setups (Figure 2A and 2B). Based on attention weights, we also highlighted significant visits (Figure 3A) and features (Figure 3B) and observed that CDRSB and FAQ features and the most recent visit had highest influence in predictions. ConclusionWe propose TA‐RNN, an interpretable model to predict MCI to AD conversion while handling irregular time intervals. TA‐RNN outperformed SOTA and baseline methods in multiple experiments. 
    more » « less