skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Active Asteroids Citizen Science Program: Overview and First Results
Abstract We present the Citizen Science program Active Asteroids and describe discoveries stemming from our ongoing project. Our NASA Partner program is hosted on the Zooniverse online platform and launched on 2021 August 31, with the goal of engaging the community in the search for active asteroids—asteroids with comet-like tails or comae. We also set out to identify other unusual active solar system objects, such as active Centaurs, active quasi-Hilda asteroids (QHAs), and Jupiter-family comets (JFCs). Active objects are rare in large part because they are difficult to identify, so we ask volunteers to assist us in searching for active bodies in our collection of millions of images of known minor planets. We produced these cutout images with our project pipeline that makes use of publicly available Dark Energy Camera data. Since the project launch, roughly 8300 volunteers have scrutinized some 430,000 images to great effect, which we describe in this work. In total, we have identified previously unknown activity on 15 asteroids, plus one Centaur, that were thought to be asteroidal (i.e., inactive). Of the asteroids, we classify four as active QHAs, seven as JFCs, and four as active asteroids, consisting of one main-belt comet (MBC) and three MBC candidates. We also include our findings concerning known active objects that our program facilitated, an unanticipated avenue of scientific discovery. These include discovering activity occurring during an orbital epoch for which objects were not known to be active, and the reclassification of objects based on our dynamical analyses.  more » « less
Award ID(s):
1950901
PAR ID:
10497441
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astronomical Journal
Volume:
167
Issue:
4
ISSN:
0004-6256
Page Range / eLocation ID:
156
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We announce the discovery of a main-belt comet (MBC), 2010 LH15(alternately designated 2010 TJ175). MBCs are a rare type of main-belt asteroid that display comet-like activity, such as tails or comae, caused by sublimation. Consequently, MBCs help us map the location of solar system volatiles, providing insight into the origins of material prerequisite for life as we know it. However, MBCs have proven elusive, with fewer than 20 found among the 1.1 million known main-belt asteroids. This finding derives from Active Asteroids, a NASA Partner Citizen Science program we designed to identify more of these important objects. After volunteers classified an image of 2010 LH15as showing activity, we carried out a follow-up investigation which revealed evidence of activity from two epochs spanning nearly a decade. This discovery is timely, with 2010 LH15inbound toward its 2024 March perihelion passage, with potential activity onset as early as late 2023. 
    more » « less
  2. Abstract We have discovered evidence of cometary activity originating from (551023) 2012 UQ192(alternately designated 2019 SN40), which we dynamically classify as a Jupiter Family Comet (JFC). JFCs have eccentric Jupiter-crossing orbits and originate in the Kuiper Belt. Analysis of these objects can provide vital information about minor planets in the outer solar system, such as the distribution of volatiles within the solar system. Activity on 2012 UQ192was first recognized by volunteers on our NASA Partner Citizen Science projectActive Asteroids. Through our own examination of archival image data, we found a total of ∼30 images presenting strong evidence of activity near perihelion during two separate orbits. 2012 UQ192is notable as we found it to be recurrently active. When 2012 UQ192approaches its perihelion passage in 2027 September, we predict it will reactivate and will be a prime subject for follow-up observations. 
    more » « less
  3. Abstract We report the discovery of cometary activity emanating from Main-belt asteroid 410590 (2008 GB140), a finding facilitated, for the first time, by an artificial intelligence (AI) assistant. The assistant,TailNet, is a prototype we designed to enhance volunteer efforts of our Citizen Science projectActive Asteroids, a NASA Partner program hosted on theZooniverseplatform. Our follow-up investigation revealed eight Dark Energy Camera images showing 2008 GB140with a tail spanning UT 2023 April 23–UT 2023 July 3, when the object was inbound to perihelion. We classify 2008 GB140as an active asteroid and a candidate Main-belt comet (MBC)—a main-belt asteroid that undergoes volatile sublimation-driven activity. Notably, 2008 GB140is presently near perihelion, thus the object is a prime target for follow-up observations to further characterize its activity. 
    more » « less
  4. Abstract We report our discovery of cometary activity in the form of a diffuse tail associated with minor planet 2008 QZ44during two previous orbits: 2008 and 2017. This finding was prompted in part byActive Asteroids, ourZooniverse-hosted NASA Partner Citizen Science program. Participants flagged two UT 2017 July 12 Dark Energy Camera images of 2008 QZ44as active. Independently, our team identified activity in nine Canada-France-Hawaii Telescope MegaPrime images from UT 2008 November 20. During both apparitions 2008 QZ44was near its perihelion passage. 2008 QZ44has a Tisserand parameter with respect to Jupiter of 2.821, placing it in the Jupiter-family comet (JFC) class, and our dynamical integrations confirm this classification. JFCs contain primordial material that informs us about solar system evolution, and help us map the present-day volatile distribution. We note that 2008 QZ44has previously been classified as a quasi-Hilda comet candidate. 
    more » « less
  5. Abstract We present the discovery of cometary activity on 2018 OR as part of ourActive Asteroidsproject, a NASA Partner Program fueled byZooniverseCitizen Scientists. Volunteers found 2018 OR with a long, diffuse tail in archival images from the Dark Energy Camera on the Blanco 4 m telescope at the Cerro Tololo Inter-American Observatory in Chile. Our team identified additional Canada–France–Hawaii–Telescope MegaCam and Zwicky Transient Facility archival data after classification by Citizen Scientists. Activity originating from 2018 OR and directed in the anti-solar and anti-velocity directions was visible in archival images between UT 2018 September 5–18. Our dynamical simulations indicate 2018 OR experiences close encounters with Jupiter over hundred-year timescales. The orbital period and dynamics suggest 2018 OR is a Jupiter Family Comet, and we recommend further observations from the community to reduce observational uncertainties and investigate activity patterns. 
    more » « less