skip to main content


Title: “Resistance leads to self-destruction”: how an (a)political strategy helped Karl von Frisch succeed during the Nazi era
Abstract

Karl von Frisch, one of the leading zoologists of the twentieth century and co-founder of the Journal of Comparative Physiology A, has been frequently portrayed as an opponent of the Nazi regime because he, as a ‘quarter-Jew,’ faced the threat of forced retirement from his position as a professor at the University of Munich during the Third Reich. However, doubts about an active opposition role have surfaced in recent years. A litmus test for assessing the validity of this notion is provided by our discovery that four of the six core members of the anti-Nazi resistance group ‘White Rose’—Sophie Scholl, Hans Scholl, Christoph Probst, and Alexander Schmorell—were his students. When they were arrested, sentenced to death, and executed, he seemed to ignore this historic event, both during and after World War II—in line with his belief that resistance leads to self-destruction, and research can flourish only by ignoring what happens around oneself. On the other hand, this seemingly apolitical attitude did not prevent him from making use of politics when it served his interests. Such actions included his (pseudo-)scientific justification of forced sterilization of people suffering from hereditary disorders during the Third Reich and his praise of the Nazi government’s efforts to “keep races pure.” As unsettling as these and some other political views and actions of Karl von Frisch are, they enabled him to carry out several critical pieces of his research agenda during the Third Reich, which three decades later earned him a Nobel Prize.

 
more » « less
NSF-PAR ID:
10497500
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Comparative Physiology A
Volume:
210
Issue:
2
ISSN:
0340-7594
Format(s):
Medium: X Size: p. 145-166
Size(s):
["p. 145-166"]
Sponsoring Org:
National Science Foundation
More Like this
  1. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments. 
    more » « less
  2. Abstract

    Bees are known for their ability to forage with high efficiency. One of their strategies to avoid unproductive foraging is to be at the food source at the right time of the day. Approximately one hundred years ago, researchers discovered that honeybees have a remarkable time memory, which they use for optimizing foraging. Ingeborg Beling was the first to examine this time memory experimentally. In her doctoral thesis, completed under the mentorship of Karl von Frisch in 1929, she systematically examined the capability of honeybees to remember specific times of the day at which they had been trained to appear at a feeding station. Beling was a pioneer in chronobiology, as she described the basic characteristics of the circadian clock on which the honeybee's time memory is based. Unfortunately, after a few years of extremely productive research, she ended her scientific career, probably due to family reasons or political pressure to reduce the number of women in the workforce. Here, we present a biographical sketch of Ingeborg Beling and review her research on the time memory of honeybees. Furthermore, we discuss the significance of her work, considering what is known about time memory today — nearly 100 years after she conducted her experiments.

     
    more » « less
  3. In March 2020, the global COVID-19 pandemic forced universities across the United States to immediately stop face-to-face activities and transition to virtual instruction. While this transition was not easy for anyone, the shift to online learning was especially difficult for STEM courses, particularly engineering, which has a strong practical/laboratory component. Additionally, underrepresented students (URMs) in engineering experienced a range of difficulties during this transition. The purpose of this paper is to highlight underrepresented engineering students’ experiences as a result of COVID-19. In particular, we aim to highlight stories shared by participants who indicated a desire to share their experience with their instructor. In order to better understand these experiences, research participants were asked to share a story, using the novel data collection platform SenseMaker, based on the following prompt: Imagine you are chatting with a friend or family member about the evolving COVID-19 crisis. Tell them about something you have experienced recently as an engineering student. Conducting a SenseMaker study involves four iterative steps: 1) Initiation is the process of designing signifiers, testing, and deploying the instrument; 2) Story Collection is the process of collecting data through narratives; 3) Sense-making is the process of exploring and analyzing patterns of the collection of narratives; and 4) Response is the process of amplifying positive stories and dampening negative stories to nudge the system to an adjacent possible (Van der Merwe et al. 2019). Unlike traditional surveys or other qualitative data collection methods, SenseMaker encourages participants to think more critically about the stories they share by inviting them to make sense of their story using a series of triads and dyads. After completing their narrative, participants were asked a series of triadic, dyadic, and sentiment-based multiple-choice questions (MCQ) relevant to their story. For one MCQ, in particular, participants were required to answer was “If you could do so without fear of judgment or retaliation, who would you share this story with?” and were given the following options: 1) Family 2) Instructor 3) Peers 4) Prefer not to answer 5) Other. A third of the participants indicated that they would share their story with their instructor. Therefore, we further explored this particular question. Additionally, this paper aims to highlight this subset of students whose primary motivation for their actions were based on Necessity. High-level qualitative findings from the data show that students valued Grit and Perseverance, recent experiences influenced their Sense of Purpose, and their decisions were majorly made based on Intuition. Chi-squared tests showed that there were not any significant differences between race and the desire to share with their instructor, however, there were significant differences when factoring in gender suggesting that gender has a large impact on the complexity of navigating school during this time. Lastly, ~50% of participants reported feeling negative or extremely negative about their experiences, ~30% reported feeling neutral, and ~20% reported feeling positive or extremely positive about their experiences. In the study, a total of 500 micro-narratives from underrepresented engineering students were collected from June – July 2020. Undergraduate and graduate students were recruited for participation through the researchers’ personal networks, social media, and through organizations like NSBE. Participants had the option to indicate who is able to read their stories 1) Everyone 2) Researchers Only, or 3) No one. This work presents qualitative stories of those who granted permission for everyone to read. 
    more » « less
  4. Abstract

    August Krogh twice won the prestigious international Steegen Prize, for nitrogen metabolism (1906) and overturning the concept of active transport of gases across the pulmonary epithelium (1910). Despite this, at the beginning of 1920, the consummate experimentalist was relatively unknown worldwide and even among his own University of Copenhagen faculty. But, in early 1919, he had submitted three papers to Dr Langley, then editor ofThe Journal of Physiologyin England. These papers coalesced anatomical observations of skeletal muscle capillary numbers with O2diffusion theory to propose a novel active role for capillaries that explained the prodigious increase in blood‐muscle O2flux from rest to exercise. Despite his own appraisal of the first two papers as “rather dull” to his friend, the eminent Cambridge respiratory physiologist, Joseph Barcroft, Krogh believed that the third one, dealing with O2supply and capillary regulation, was“interesting”. These papers, which won Krogh an unopposed Nobel Prize for Physiology or Medicine in 1920, form the foundation for this review. They single‐handedly transformed the role of capillaries from passive conduit and exchange vessels, functioning at the mercy of their upstream arterioles, into independent contractile units that were predominantly closed at rest and opened actively during muscle contractions in a process he termed ‘capillary recruitment’. Herein we examine Krogh's findings and some of the experimental difficulties he faced. In particular, the boundary conditions selected for his model (e.g. heavily anaesthetized animals, negligible intramyocyte O2partial pressure, binary open‐closed capillary function) have not withstood the test of time. Subsequently, we update the reader with intervening discoveries that underpin our current understanding of muscle microcirculatory control and place a retrospectroscope on Krogh's discoveries. The perspective is presented that the imprimatur of the Nobel Prize, in this instance, may have led scientists to discount compelling evidence. Much as he and Marie Krogh demonstrated that active transport of gases across the blood‐gas barrier was unnecessary in the lung, capillaries in skeletal muscle do not open and close spontaneously or actively, nor is this necessary to account for the increase in blood‐muscle O2flux during exercise. Thus, a contemporary model of capillary function features most muscle capillaries supporting blood flow at rest, and, rather than capillaries actively vasodilating from rest to exercise, increased blood‐myocyte O2flux occurs predominantly via elevating red blood cell and plasma flux in already flowing capillaries. Krogh is lauded for his brilliance as an experimentalist and for raising scientific questions that led to fertile avenues of investigation, including the study of microvascular function.image

     
    more » « less
  5. Can a lack of transitional justice contribute to democratic backsliding? This paper uses the case of Poland to argue that selective enforcement of transitional justice can be linked to democratic erosion. In doing so, the paper adjudicates between two theories of democratic backsliding. The first, advanced by Milan Svolik, argues that elite polarization drives erosion: when political candidates are ideologically far apart, citizens who strongly prefer one over the other may turn a blind eye to antidemocratic transgressions by their preferred candidate to prevent the competing candidate from winning. The second theory, presented by Nalepa, Vanberg, and Ciopris (NVC), describes an equilibrium where voters are uncertain whether the candidate they are dealing with is a closet autocrat or an ideological incumbent, but reelect him into office regardless. This theory posits that a closet autocrat is reelected into office because his first period actions are identical to those of an ideological incumbent. I argue that judiciary reforms in Poland reflect exactly the kind of incumbent actions that are consistent both with the actions of an ideological incumbent and with the actions of a closet autocrat. Using survey data from Poland, I find evidence of elite polarization, offering support for the first theory, but also find ample evidence of polarization in the electorate and of a belief structure supportive of the equilibrium from NVC. I present Hungary’s experience with transitional justice and the rule of law as a shadow case to illustrate similar dynamics to those taking place in Poland. 
    more » « less