skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncovering the link between environmental factors and coral immunity: A study of fluorescent protein expression and phenoloxidase activity in Acropora cervicornis
Worsening environmental conditions due to climate change have profoundly affected the health of coral reefs worldwide. Thus, understanding how corals respond to fluctuating and/or extreme levels of temperature and solar irradiation will guide future protection and restoration efforts of this valuable ecosystem. Herein, we present a study of the immune responses of the endangered coralAcropora cervicornisto seasonal fluctuations in water temperature (WT), light intensity (LI), and water depth. Immune responses were observed by measuring the concentration of green and cyan fluorescent proteins (GFP and CyFP) and the activity of phenoloxidase (PO), an enzyme involved in the biosynthesis of the photoprotective protein melanin. To study these responses, visually healthyA. cervicornisfragments were placed at 8, and 12 m depth, and GFP, CyPF, and PO activity were measured at three-month intervals over a 12-month period. Seawater temperature and light intensity were also measured at each depth during this period. A general linear mixed model was used to determine the effects of seasonal variations of WT, LI, and water depth on the immune proteins. GFP, CyFP, and PO activity varied significantly across time – all higher in late summer/early fall and lower in late winter/early spring. Likewise, WT and LI significantly affected GFP, CyFP, and PO activity. On the other hand, water depth only had a significant effect on fluorescent protein concentrations but not PO activity. Our study demonstrates that corals can modulate these key immune-related proteins throughout natural seasonal fluctuations. That is, increasing in months of higher thermal and light conditions while decreasing in months with mild thermal and light conditions. The phenotypic plasticity ofA. cervicornisin adapting to a changing environment underscores the importance that in future studies time of the year should be a meaningful consideration when evaluating the responses ofA. cervicornisto the environment.  more » « less
Award ID(s):
1736093
PAR ID:
10497564
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Frontier
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
10
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marine heatwaves are increasing in frequency and duration, threatening tropical reef ecosystems through intensified coral bleaching events. We examined a strikingly variable spatial pattern of bleaching in Moorea, French Polynesia following a heatwave that lasted from November 2018 to July 2019. In July 2019, four months after the onset of bleaching, we surveyed > 5000 individual colonies of the two dominant coral genera,PocilloporaandAcropora, at 10 m and 17 m water depths, at six forereef sites around the island where temperature was measured. We found severe bleaching increased with colony size for both coral genera, butAcroporableached more severely thanPocilloporaoverall. Acroporableached more at 10 m than 17 m, likely due to higher light availability at 10 m compared to 17 m, or greater daily temperature fluctuation at depth. Bleaching inPocilloporacorals did not differ with depth but instead varied with the interaction of colony size and Accumulated Heat Stress (AHS), in that larger colonies (> 30 cm) were more sensitive to AHS than mid-size (10–29 cm) or small colonies (5–9 cm). Our findings provide insight into complex interactions among coral taxa, colony size, and water depth that produce high spatial variation in bleaching and related coral mortality. 
    more » « less
  2. Ocean deoxygenation is intensifying globally due to human activities – and is emerging as a grave threat to coral reef ecosystems where it can cause coral bleaching and mass mortality. However, deoxygenation is one of many threats to coral reefs, making it essential to understand how prior environmental stress may influence responses to deoxygenation. To address this question, we examined responses of the coral holobiont (i.e., the coral host, Symbiodiniaceae, and the microbiome) to deoxygenation in corals with different environmental stress backgrounds. We outplantedAcropora cervicornisfragments of known genotypes from anin situnursery to two sites in the Florida Keys spanning an inshore-offshore gradient. After four months, fragments from the outplanted corals were transferred to the laboratory, where we tested differences in survivorship, tissue loss, photosynthetic efficiency, Symbiodiniaceae cell density, and coral microbiome composition after persistent exposure to one of four oxygen treatments ranging from extreme deoxygenation (0.5 mg L-1) to normoxia (6 mg L-1). We found that, for the short duration of exposure tested in this study (four days), the entire coral holobiont was resistant to dissolved oxygen (DO) concentrations as low as 2.0 mg L-1, but that the responses of members of the holobiont decoupled at 0.5 mg L-1. In this most extreme treatment, the coral host showed decreased photosynthetic efficiency, tissue loss, and mortality, and lower Symbiodiniaceae densities in a bleaching response, but most microbial taxa remained stable. Although deoxygenation did not cause major community shifts in microbiome composition, the population abundance of some microbial taxa did respond. Site history influenced some responses of the coral host and endosymbiont, but not the coral microbiome, with corals from the more stressful inshore site showing greater susceptibility to subsequent deoxygenation. Our study reveals that coral holobiont members respond differently to deoxygenation, with greater sensitivity in the coral host and Symbiodiniaceae and greater resistance in the coral microbiome, and that prior stress exposure can decrease host tolerance to deoxygenation. 
    more » « less
  3. Abstract Coral diseases have increased in frequency and intensity around the tropics worldwide. However, in many cases, little is known about their etiology.Montiporawhite syndrome (MWS) is a common disease affecting the coralMontipora capitata, a major reef builder in Hawai'i. ChronicMontiporawhite syndrome (cMWS) is a slow‐moving form of the disease that affectsM. capitatathroughout the year. The effects of this chronic disease on coral immunology and microbiology are currently unknown. In this study, we use prophenoloxidase immune assays and 16S rRNA gene amplicon sequencing to characterize the microbiome and immunological response associated with cMWS. Our results show that immunological and microbiological responses are highly localized. Relative to diseased samples, apparently healthy portions of cMWS corals differed in immune activity and in the relative abundance of microbial taxa. Coral tissues with cMWS showed decreased tyrosinase‐type catecholase and tyrosinase‐type cresolase activity and increased laccase‐type activity. Catecholase and cresolase activity were negatively correlated across all tissue types with microbiome richness. The localized effect of cMWS on coral microbiology and immunology is probably an important reason for the slow progression of the disease. This local confinement may facilitate interventions that focus on localized treatments on tissue types. This study provides an important baseline to understand the interplay between the microbiome and immune system and the mechanisms used by corals to manage chronic microbial perturbations associated with white syndrome. 
    more » « less
  4. We test a newly developed instrument prototype which utilizes time-resolved chlorophyll- a fluorescence techniques and fluctuating light to characterize Symbiodiniaceae functional traits across seven different coral species under cultivation as part of ongoing restoration efforts in the Florida Keys. While traditional chlorophyll- a fluorescence techniques only provide a handful of algal biometrics, the system and protocol we have developed generates > 1000 dynamic measurements in a short (~11 min) time frame. Resulting ‘high-content’ algal biometric data revealed distinct phenotypes, which broadly corresponded to genus-level Symbiodiniaceae designations determined using quantitative PCR. Next, algal biometric data from Acropora cervicornis (10 genotypes) and A. palmata (5 genotypes) coral fragments was correlated with bleaching response metrics collected after a two month-long exposure to high temperature. A network analysis identified 1973 correlations (Spearman R > 0.5) between algal biometrics and various bleaching response metrics. These identified biomarkers of thermal stress were then utilized to train a predictive model, and when tested against the same A. cervicornis and A. palmata coral fragments, yielded high correlation (R = 0.92) with measured thermal response (reductions in absorbance by chlorophyll-a). When applied to all seven coral species, the model ranked fragments dominated by Cladocopium or Breviolum symbionts as more bleaching susceptible than corals harboring thermally tolerant symbionts ( Durusdinium ). While direct testing of bleaching predictions on novel genotypes is still needed, our device and modeling pipeline may help broaden the scalability of existing approaches for determining thermal tolerance in reef corals. Our instrument prototype and analytical pipeline aligns with recent coral restoration assessments that call for the development of novel tools for improving scalability of coral restoration programs. 
    more » « less
  5. Abstract The prevalence of global coral bleaching has focused much attention on the possibility of interventions to increase heat resistance. However, if high heat resistance is linked to fitness tradeoffs that may disadvantage corals in other areas, then a more holistic view of heat resilience may be beneficial. In particular, overall resilience of a species to heat stress is likely to be the product of both resistance to heat and recovery from heat stress. Here, we investigate heat resistance and recovery among individualAcropora hyacinthuscolonies in Palau. We divided corals into low, moderate, and high heat resistance categories based on the number of days (4–9) needed to reach significant pigmentation loss due to experimental heat stress. Afterward, we deployed corals back onto a reef in a common garden 6‐month recovery experiment that monitored chlorophylla, mortality, and skeletal growth. Heat resistance was negatively correlated with mortality during early recovery (0–1 month) but not late recovery (4–6 months), and chlorophyllaconcentration recovered in heat‐stressed corals by 1‐month postbleaching. However, moderate‐resistance corals had significantly greater skeletal growth than high‐resistance corals by 4 months of recovery. High‐ and low‐resistance corals on average did not exhibit skeletal growth within the observed recovery period. These data suggest complex tradeoffs may exist between coral heat resistance and recovery and highlight the importance of incorporating multiple aspects of resilience into future reef management programs. 
    more » « less