skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on November 1, 2024

Title: Basement Membrane Mimetic Hydrogel Cooperates with Rho‐Associated Protein Kinase Inhibitor to Promote the Development of Acini‐Like Salivary Gland Spheroids

Successful engineering of functional salivary glands necessitates the creation of cell‐instructive environments for ex vivo expansion and lineage specification of primary human salivary gland stem cells (hS/PCs). Herein, basement membrane mimetic hydrogels are prepared using hyaluronic acid, cell adhesive peptides, and hyperbranched polyglycerol (HPG), with or without sulfate groups, to produce “hyperGel+” or “hyperGel”, respectively. Differential scanning fluorescence experiments confirm the ability of the sulfated HPG precursor to stabilize fibroblast growth factor 10. The hydrogels are nanoporous, cytocompatible, and cell‐permissive, enabling the development of multicellular hS/PC spheroids in 14 days. The incorporation of sulfated HPG species in the hydrogel enhances cell proliferation. Culture of hS/PCs in hyperGel+ in the presence of a Rho kinase inhibitor Y‐27632 (Y‐27) leads to the development of spheroids with a central lumen, increases the expression of acinar marker aquaporin‐3 at the transcript level (AQP3), and decreases the expression of ductal marker keratin 7 at both the transcript (KRT7) and the protein levels (K7). Reduced expression of transforming growth factor beta (TGF‐β) targets SMAD2/3 is also observed in Y27‐treated cultures, suggesting attenuation of TGF‐β signaling. Thus, hyperGel+ cooperates with the Rho‐associated protein kinase inhibitor to promote the development of lumened spheroids with enhanced expression of acinar markers.

 
more » « less
Award ID(s):
2243648
NSF-PAR ID:
10497609
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced NanoBiomed Research
Volume:
3
Issue:
11
ISSN:
2699-9307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synthetic matrices that are cytocompatible, cell adhesive and cell responsive are needed for the engineering of implantable, secretory salivary gland constructs to treat radiation induced xerostomia or dry mouth. Here, taking advantage of the bioorthogonality of the Michael-type addition reaction, hydrogels with comparable stiffness but varying degrees of degradability (100% degradable: 100DEG; 50% degradable: 50DEG; and non-degradable: 0DEG) by cell-secreted matrix metalloproteases (MMPs) were synthesized using thiolated HA (HA-SH), maleimide (MI)-conjugated integrin-binding peptide (RGD-MI) and MI-functionalized peptide crosslinkers that are protease degradable (GIW-bisMI) or non-degradable (GIQ-bisMI). Organized multicellular structures developed readily in all hydrogels from dispersed primary human salivary gland stem/progenitor cells (hS/PCs). As the matrix became progressively degradable, cells proliferated more readily and the multicellular structures became larger, less spherical, and more lobular. Immunocytochemical analysis showed positive staining for stem/progenitor cell markers CD44 and keratin 5 (K5) in all three types of cultures, and positive staining for the acinar marker α-amylase under 50DEG and 100DEG conditions. Quantitatively at the mRNA level, the expression levels of key stem/progenitor markers KIT, KRT5, and ETV4/5 were significantly increased in the degradable gels as compared to the non-degradable counterparts. Western blot analyses revealed that imparting matrix degradation led to >3.8-fold increase in KIT expression by day 15. The MMP-degradable hydrogels also promoted the development of a secretary phenotype, as evidenced by the upregulation of acinar markers α-amylase (AMY), aquaporin-5 (AQP5), and sodium-potassium-chloride cotransporter 1 (SLC12A2). Collectively, we show that cell-mediated matrix remodeling is necessary for the development of regenerative pro-acinar progenitor cells from hS/PCs. 
    more » « less
  2. Abstract

    Cartilage tissue engineering strategies seek to repair damaged tissue using approaches that include scaffolds containing components of the native extracellular matrix (ECM). Articular cartilage consists of glycosaminoglycans (GAGs) which are known to sequester growth factors. In order to more closely mimic the native ECM, this study evaluated the chondrogenic differentiation of mesenchymal stem cells (MSCs), a promising cell source for cartilage regeneration, on fibrous scaffolds that contained the GAG‐mimetic cellulose sulfate. The degree of sulfation was evaluated, examining partially sulfated cellulose (pSC) and fully sulfated cellulose (NaCS). Comparisons were made with scaffolds containing native GAGs (chondroitin sulfate A, chondroitin sulfate C and heparin). Transforming growth factor‐beta3 (TGF‐β3) sequestration, as measured by rate of association, was higher for sulfated cellulose‐containing scaffolds as compared to native GAGs. In addition, TGF‐β3 sequestration and retention over time was highest for NaCS‐containing scaffolds. Sulfated cellulose‐containing scaffolds loaded with TGF‐β3 showed enhanced chondrogenesis as indicated by a higher Collagen Type II:I ratio over native GAGs. NaCS‐containing scaffolds loaded with TGF‐β3 had the highest expression of chondrogenic markers and a reduction of hypertrophic markers in dynamic loading conditions, which more closely mimic in vivo conditions. Studies also demonstrated that TGF‐β3 mediated its effect through the Smad2/3 signaling pathway where the specificity of TGF‐β receptor (TGF‐ βRI)‐phosphorylated SMAD2/3 was verified with a receptor inhibitor. Therefore, studies demonstrate that scaffolds containing cellulose sulfate enhance TGF‐β3‐induced MSC chondrogenic differentiation and show promise for promoting cartilage tissue regeneration.

     
    more » « less
  3. Abstract

    Intraovarian growth factors play a vital role in influencing the fate of ovarian follicles. They affect proliferation and apoptosis of granulosa cells (GC) and can influence whether small antral follicles continue their growth or undergo atresia. Transforming growth factor-alpha (TGFα), an oocyte-derived growth factor, is thought to regulate granulosa cell function; yet its investigation has been largely overshadowed by emerging interest in TGF-beta superfamily members, such as bone morphogenetic proteins (BMP) and anti-Mullerian hormone (AMH). Here, effects of TGFα on bovine GC proliferation, intracellular signaling, and cytokine-induced apoptosis were evaluated. Briefly, all small antral follicles (3–5 mm) from slaughterhouse specimens of bovine ovary pairs were aspirated and the cells were plated in T25 flasks containing DMEM/F12 medium, 10% FBS, and antibiotic-antimycotic, and incubated at 37 °C in 5% CO2 for 3 to 4 d. Once confluent, the cells were sub-cultured for experiments (in 96-, 12-, or 6-well plates) in serum-free conditions (DMEM/F12 medium with ITS). Exposure of the bGC to TGFα (10 or 100 ng/mL) for 24 h stimulated cell proliferation compared to control (P < 0.05; n = 7 ovary pairs). Proliferation was accompanied by a concomitant increase in mitogen-activated protein kinase (MAPK) signaling within 2 h of treatment, as evidenced by phosphorylated ERK1/2 expression (P < 0.05, n = 3 ovary pairs). These effects were entirely negated, however, by the MAPK inhibitor, U0126 (10uM, P < 0.05). Additionally, prior exposure of the bGC to TGFα (100 ng/mL) failed to prevent Fas Ligand (100 ng/mL)-induced apoptosis, as measured by caspase 3/7 activity (P < 0.05, n = 7 ovary pairs). Collectively, the results indicate TGFα stimulates proliferation of bGC from small antral follicles via a MAPK/ERK-mediated mechanism, but this action alone fails to prevent apoptosis, suggesting that TGFα may be incapable of promoting their persistence in follicles during the process of follicular selection/dominance.

     
    more » « less
  4. Abstract

    The anti‐malaria drug artesunate and other chemical analogs of artemisinin have demonstrated cytostatic and cytotoxic effects in bacterial and cancer cells. Artemisinin‐derived compounds have also been demonstrated to attenuate fibrosis in preclinical animal models, but the mechanisms by which this inhibition occurs are not well‐understood. We investigated the effects of artesunate on the emergence of the myofibroblast, which is causally implicated in pro‐fibrotic pathologies. CRL‐2097 human dermal fibroblasts were analyzed for protein and transcript expression after treatment with artesunate to analyze fibroblast activation. Proliferation and apoptosis were also evaluated following treatment with artesunate in this cell line. Treatment of human dermal fibroblasts with artesunate antagonized fibroblast activation and pro‐fibrotic extracellular matrix (ECM) deposition, both at basal culture conditions and when cultured in the presence of exogenous transforming growth factor‐β1 (TGF‐β1), a major pro‐fibrotic cytokine. Artesunate‐treated fibroblasts also demonstrated decreased proliferation and increased apoptosis. Transcript analysis by quantitative real‐time polymerase chain reaction demonstrated that artesunate downregulated expression of pro‐fibrotic genes including canonical myofibroblast markers, ECM genes, and several TGF‐β receptors and ligands, and upregulated expression of cell cycle inhibitors and matrix‐metalloproteinases. Together, these data demonstrate that artesunate antagonizes fibroblast activation and decreases expression of pro‐fibrotic genes, while also promoting myofibroblast apoptosis, suggesting that these mechanisms may be responsible in part for the anti‐fibrotic effects of artesunate described previously.

     
    more » « less
  5. Abstract

    Epithelial‐mesenchymal transition (EMT) is a physiological process that is essential during embryogenesis and wound healing and also contributes to pathologies including fibrosis and cancer. EMT is characterized by marked gene expression changes, loss of cell–cell contacts, remodeling of the cytoskeleton, and acquisition of enhanced motility. In the late stages of EMT, cells can exhibit myofibroblast‐like properties with enhanced expression of the mesenchymal protein marker α‐smooth muscle actin and contractile activity. Transforming growth factor (TGF)‐β1 is a well‐known inducer of EMT and it activates a plethora of signaling cascades including extracellular signal‐regulated kinase (ERK). Previous reports have demonstrated a role for ERK signaling in the early stages of EMT, but the molecular impacts of ERK signaling on the late stages of EMT are still unknown. Here, we found that inhibition of the phosphorylation of ERK enhances focal adhesions, stress fiber formation, cell contractility, and gene expression changes associated with TGFβ1‐induced EMT in mammary epithelial cells. These effects are mediated in part by the phosphorylation state and subcellular localization of myocardin‐related transcription factor‐A. These findings indicate that the intricate crosstalk between signaling cascades plays an important role in regulating the progression of EMT and suggests new approaches to control EMT processes.

     
    more » « less