skip to main content


Title: Information Retention in the Multi-Platform Sharing of Science
The public interest in accurate scientific communication, underscored by recent public health crises, highlights how content often loses critical pieces of information as it spreads online. However, multi-platform analyses of this phenomenon remain limited due to challenges in data collection. Collecting mentions of research tracked by Altmetric LLC, we examine information retention in over 4 million online posts referencing 9,765 of the most-mentioned scientific articles across blog sites, Facebook, news sites, Twitter, and Wikipedia. To do so, we present a burst-based framework for examining online discussions about science over time and across different platforms. To measure information retention, we develop a keyword-based computational measure comparing an online post to the scientific article’s abstract. We evaluate our measure using ground truth data labeled by within-field experts. We highlight three main findings: first, we find a strong tendency towards low levels of information retention, following a distinct trajectory of loss except when bursts of attention begin on social media. Second, platforms show significant differences in information retention. Third, sequences involving more platforms tend to be associated with higher information retention. These findings highlight a strong tendency towards information loss over time—posing a critical concern for researchers, policymakers, and citizens alike—but suggest that multi-platform discussions may improve information retention overall.  more » « less
Award ID(s):
2133964
NSF-PAR ID:
10497611
Author(s) / Creator(s):
Publisher / Repository:
AAAI
Date Published:
Journal Name:
THE 17TH INTERNATIONAL AAAI CONFERENCE ON WEB AND SOCIAL MEDIA
Format(s):
Medium: X
Location:
LIMASSOL, CYPRUS
Sponsoring Org:
National Science Foundation
More Like this
  1. Lin, Yu-Ru ; Cha, Meeyoung ; Quercia, Daniele (Ed.)
    The public interest in accurate scientific communication, underscored by recent public health crises, highlights how content often loses critical pieces of information as it spreads on-line. However, multi-platform analyses of this phenomenon remain limited due to challenges in data collection. Collecting mentions of research tracked by Altmetric LLC, we examine information retention in the over 4 million online posts referencing 9,765 of the most-mentioned scientific articles across blog sites, Facebook, news sites, Twitter, and Wikipedia. To do so, we present a burst-based framework for examining online discussions about science over time and across different platforms. To measure information retention, we develop a keyword-based computational measure comparing an online post to the scientific article’s abstract. We evaluate our measure using ground truth data labeled by within field experts. We highlight three main findings: first, we find a strong tendency towards low levels of information retention, following a distinct trajectory of loss except when bursts of attention begin in social media. Second, platforms show significant differences in information retention. Third, sequences involving more platforms tend to be associated with higher information retention. These findings highlight a strong tendency towards information loss over time—posing a critical concern for researchers, policymakers, and citizens alike—but suggest that multi-platform discussions may im-prove information retention overall. 
    more » « less
  2. null (Ed.)
    Scientists have long sought to engage public audiences in research through citizen science projects such as biological surveys or distributed data collection. Recent online platforms have expanded the scope of what people-powered research can mean. Science museums are unique cultural institutions that translate scientific discovery for public audiences, while conducting research of their own. This makes museums compelling sites for engaging audiences directly in scientific research, but there are associated challenges as well. This project engages public audiences in contributing to real research as part of their visit to a museum. We present the design and evaluation of U!Scientist, an interactive multi-person tabletop exhibit based on the online Zooniverse project, Galaxy Zoo. We installed U!Scientist in a planetarium and collected video, computer logs, naturalistic observations, and surveys with visitors. Our findings demonstrate the potential of exhibits to engage new audiences in collaborative scientific discussions as part of people-powered research. 
    more » « less
  3. Retracted papers often circulate widely on social media, digital news, and other websites before their official retraction. The spread of potentially inaccurate or misleading results from retracted papers can harm the scientific community and the public. Here, we quantify the amount and type of attention 3,851 retracted papers received over time in different online platforms. Comparing with a set of nonretracted control papers from the same journals with similar publication year, number of coauthors, and author impact, we show that retracted papers receive more attention after publication not only on social media but also, on heavily curated platforms, such as news outlets and knowledge repositories, amplifying the negative impact on the public. At the same time, we find that posts on Twitter tend to express more criticism about retracted than about control papers, suggesting that criticism-expressing tweets could contain factual information about problematic papers. Most importantly, around the time they are retracted, papers generate discussions that are primarily about the retraction incident rather than about research findings, showing that by this point, papers have exhausted attention to their results and highlighting the limited effect of retractions. Our findings reveal the extent to which retracted papers are discussed on different online platforms and identify at scale audience criticism toward them. In this context, we show that retraction is not an effective tool to reduce online attention to problematic papers. 
    more » « less
  4. Despite increasing awareness and research about online strategic information operations, there remain gaps in our understanding, including how information operations leverage the wider information ecosystem and take shape on and across multiple social media platforms. In this paper we use mixed methods, including digital trace ethnography, to look beyond a single social media platform to the broader information ecosystem. We aim to understand how multiple social media platforms are used, in parallel and complementary ways, to achieve the strategic goals of online information operations. We focus on a specific case study: the contested online conversation surrounding Syria Civil Defense (the White Helmets), a group of first responders that assists civilians affected by the civil war within the country. Our findings reveal a network of social media platforms from which content is produced, stored, and integrated into the Twitter conversation. We highlight specific activities that sustain the strategic narratives and attempt to influence the media agenda. And we note that underpinning these efforts is the work of resilience-building: the use of alternative (non-mainstream) platforms to counter perceived threats of 'censorship' by large, established social media platforms. We end by discussing the implications on social media platform policy. 
    more » « less
  5. Every day patients access and generate online health content through a variety of online channels, creating an ever-expanding sea of data in the form of digital communications. At the same time, proponents of public health have recently called for timely, granular, and actionable data to address a range of public health issues, stressing the need for social listening platforms that can identify and compile this valuable data. Yet previous attempts at social listening in healthcare have yielded mixed results, largely because they have failed to incorporate sufficient context to understand the communications they seek to analyze. Guided by Activity Theory to design HealthSense, we propose a platform for efficiently sensing and gathering data across the web for real time analysis to support public health outcomes. HealthSense couples theory-guided content analysis and graph propagation with graph neural networks (GNNs) to assess the relevance and credibility of information, as well as intelligently navigate the complex online channel landscape, leading to significant improvements over existing social listening tools. We demonstrate the value of our artifact in gathering information to support two important exemplar public health tasks: 1) performing post market drug surveillance for adverse reactions and 2) addressing the opioid crisis by monitoring for potent synthetic opioids released into communities. Our results across data, user, and event experiments show that effective design artifacts can enable better outcomes across both automated and human decision-making contexts, making social listening for public health possible, practical, and valuable. Through our design process, we extend Activity Theory to address the complexities of modern online communication platforms, where information resides not only within the collection of individual communication activities, but in the complex network of interactions between them. 
    more » « less