skip to main content


Title: The UV continuum slopes of early star-forming galaxies in JADES
ABSTRACT

The power-law slope of the rest-ultraviolet (UV) continuum (fλ ∝ λβ) is a key metric of early star-forming galaxies, providing one of our only windows into the stellar populations and physical conditions of z ≳ 10 galaxies. Expanding upon previous studies with limited sample sizes, we leverage deep imaging from the JWST Advanced Deep Extragalactic Survey (JADES) to investigate the UV slopes of 179 z ≳ 9 galaxies with apparent magnitudes of mF200W ≃ 26–31, which display a median UV slope of β = −2.4. We compare to a statistical sample of z ≃ 5–9 galaxies, finding a shift towards bluer rest-UV colours at all $M_{\rm UV}$. The most UV-luminous z ≳ 9 galaxies are significantly bluer than their lower redshift counterparts, representing a dearth of moderately red galaxies within the first 500 Myr. At yet earlier times, the z ≳ 11 galaxy population exhibits very blue UV slopes, implying very low impact from dust attenuation. We identify a robust sample of 44 galaxies with β ≲ −2.8, which have spectral energy distributions requiring models of density-bounded H ii regions and median ionizing photon escape fractions of 0.51 to reproduce. Their rest-optical colours imply that this sample has weaker emission lines (median mF356W − mF444W = 0.19 mag) than typical galaxies (median mF356W − mF444W = 0.39 mag), consistent with the inferred escape fractions. This sample consists of relatively low stellar masses (median $\log (M/{\rm M}_{\odot })=7.5\pm 0.2$), and specific star formation rates (sSFRs; median $=79 \, \rm Gyr^{-1}$) nearly twice that of our full galaxy sample (median sSFRs $=44 \, \rm Gyr^{-1}$), suggesting these objects are more common among systems experiencing a recent upturn in star formation. We demonstrate that the shutoff of star formation provides an alternative solution for modelling of extremely blue UV colours, making distinct predictions for the rest-optical emission of these galaxies. Future spectroscopy will be required to distinguish between these physical pictures.

 
more » « less
NSF-PAR ID:
10497679
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
529
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4087-4103
Size(s):
["p. 4087-4103"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present measurements of the rest-frame UV spectral slope,β, for a sample of 36 faint star-forming galaxies atz∼ 9–16 discovered in one of the deepest JWST NIRCam surveys to date, the Next Generation Deep Extragalactic Exploratory Public Survey. We use robust photometric measurements for UV-faint galaxies (down toMUV∼ −16), originally published in Leung et al., and measure values of the UV spectral slope via photometric power-law fitting to both the observed photometry and stellar population models obtained through spectral energy distribution (SED) fitting withBagpipes. We obtain a median and 68% confidence interval forβfrom photometric power-law fitting ofβPL=2.70.5+0.5and from SED fitting,βSED=2.30.1+0.2for the full sample. We show that when only two to three photometric detections are available, SED fitting has a lower scatter and reduced biases than photometric power-law fitting. We quantify this bias and find that after correction the medianβSED,corr=2.50.2+0.2. We measure physical properties for our galaxies withBagpipesand find that our faint (MUV=18.10.9+0.7) sample is low in mass (log[M*/M]=7.70.5+0.5), fairly dust-poor (Av=0.10.1+0.2mag), and modestly young (log[age]=7.80.8+0.2yr) with a median star formation rate oflog(SFR)=0.30.4+0.4Myr1. We find no strong evidence for ultrablue UV spectral slopes (β∼ −3) within our sample, as would be expected for exotically metal-poor (Z/Z< 10−3) stellar populations with very high Lyman continuum escape fractions. Our observations are consistent with model predictions that galaxies of these stellar masses atz∼ 9–16 should have only modestly low metallicities (Z/Z∼ 0.1–0.2).

     
    more » « less
  2. ABSTRACT

    Spitzer/Infrared Array Camera (IRAC) imaging has revealed that the brightest z ∼ 7−8 galaxies often exhibit young ages and strong nebular line emission, hinting at high ionizing efficiency among early galaxies. However, IRAC’s limited sensitivity has long hindered efforts to study the fainter, more numerous population often thought largely responsible for reionization. Here, we use Cosmic Evolution Early Release Science (CEERS) JWST/NIRCam data to characterize 116 ultraviolet (UV)-faint (median MUV = −19.5) z ∼ 6.5−8 galaxies. The spectral energy distributions are typically dominated by young (∼10–50 Myr), low-mass (M* ∼ 108 M⊙) stellar populations, and we find no need for extremely high stellar masses (∼1011 M⊙). Considering previous studies of UV-bright (MUV ∼ −22) z ∼ 7−8 galaxies, we find evidence for a strong (5–10 times) increase in specific star formation rate (sSFR) toward lower luminosities (median sSFR = 103 Gyr−1 in CEERS). The larger sSFRs imply a more dominant contribution from OB stars in the relatively numerous UV-faint population, perhaps suggesting that these galaxies are very efficient ionizing agents (median ξion = 1025.7 erg−1 Hz). In spite of the much larger sSFRs, we find little increase in [O iii] + H  β equivalent widths towards fainter MUV (median ≈780 $\mathrm{\mathring{A}}$). If confirmed, this may indicate that a substantial fraction of our CEERS galaxies possess extremely low metallicities (≲3 per cent Z⊙) where [O iii] emission is suppressed. Alternatively, high ionizing photon escape fractions or bursty star formation histories can also weaken the nebular lines in a subset of our sample. While the majority of galaxies in our sample are very blue (median β = −2.0), we identify a significant tail of very dusty galaxies (β ∼ −1) at ≈0.5$L_\mathrm{UV}^\ast$ which may contribute significantly to the z ∼ 7−8 star formation rate density.

     
    more » « less
  3. ABSTRACT

    We investigate the degree of dust obscured star formation in 49 massive (log10(M⋆/M⊙) > 9) Lyman-break galaxies (LBGs) at z = 6.5–8 observed as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Reionization Era Bright Emission Line Survey (REBELS) large program. By creating deep stacks of the photometric data and the REBELS ALMA measurements we determine the average rest-frame ultraviolet (UV), optical, and far-infrared (FIR) properties which reveal a significant fraction (fobs = 0.4–0.7) of obscured star formation, consistent with previous studies. From measurements of the rest-frame UV slope, we find that the brightest LBGs at these redshifts show bluer (β ≃ −2.2) colours than expected from an extrapolation of the colour–magnitude relation found at fainter magnitudes. Assuming a modified blackbody spectral energy distribution (SED) in the FIR (with dust temperature of $T_{\rm d} = 46\, {\rm K}$ and βd = 2.0), we find that the REBELS sources are in agreement with the local ‘Calzetti-like’ starburst Infrared-excess (IRX)–β relation. By re-analysing the data available for 108 galaxies at z ≃ 4–6 from the ALMA Large Program to Investigate C+ at Early Times (ALPINE) using a consistent methodology and assumed FIR SED, we show that from z ≃ 4–8, massive galaxies selected in the rest-frame UV have no appreciable evolution in their derived IRX–β relation. When comparing the IRX–M⋆ relation derived from the combined ALPINE and REBELS sample to relations established at z < 4, we find a deficit in the IRX, indicating that at z > 4 the proportion of obscured star formation is lower by a factor of ≳ 3 at a given a M⋆. Our IRX–β results are in good agreement with the high-redshift predictions of simulations and semi-analytic models for z ≃ 7 galaxies with similar stellar masses and star formation rates.

     
    more » « less
  4. ABSTRACT

    The first deep-field observations of the JWST have immediately yielded a surprisingly large number of very high redshift candidates, pushing the frontier of observability well beyond z ≳ 10. We here present a detailed SED-fitting analysis of the 10 gravitationally lensed z ∼ 9–16 galaxy candidates detected behind the galaxy cluster SMACS J0723.3−7327 in a previous paper using the BEAGLE tool. Our analysis makes use of dynamical considerations to place limits on the ages of these galaxies and of all three published SL models of the cluster to account for lensing systematics. We find the majority of these galaxies to have relatively low stellar masses $M_{\star }\sim 10^7-10^8\, \mathrm{M}_{\odot }$ and young ages tage ∼ 10–100 Myr but with a few higher mass exceptions ($M_{\star }\sim 10^9\rm{-}10^{10}\, \mathrm{M}_{\odot }$) due to Balmer-break detections at z ∼ 9–10. Because of their very blue UV-slopes, down to β ∼ −3, all of the galaxies in our sample have extremely low dust attenuations AV ≲ 0.02. Placing the measured parameters into relation, we find a very shallow M⋆ − MUV-slope and high sSFRs above the main sequence of star formation with no significant redshift-evolution in either relation. This is in agreement with the bright UV luminosities measured for these objects and indicates that we are naturally selecting UV-bright galaxies that are undergoing intense star formation at the time they are observed. Finally, we discuss the robustness of our high-redshift galaxy sample regarding low-redshift interlopers and conclude that low-redshift solutions can safely be ruled out for roughly half of the sample, including the highest redshift galaxies at z ∼ 12–16. These objects represent compelling targets for spectroscopic follow-up observations with JWST and ALMA.

     
    more » « less
  5. ABSTRACT We present predictions for high redshift (z = 2−10) galaxy populations based on the IllustrisTNG simulation suite and a full Monte Carlo dust radiative transfer post-processing. Specifically, we discuss the H α and H β + $[\rm O \,{\small III}]$ luminosity functions up to z = 8. The predicted H β + $[\rm O \,{\small III}]$ luminosity functions are consistent with present observations at z ≲ 3 with ${\lesssim} 0.1\, {\rm dex}$ differences in luminosities. However, the predicted H α luminosity function is ${\sim }0.3\, {\rm dex}$ dimmer than the observed one at z ≃ 2. Furthermore, we explore continuum spectral indices, the Balmer break at 4000 Å; (D4000) and the UV continuum slope β. The median D4000 versus specific star formation rate relation predicted at z = 2 is in agreement with the local calibration despite a different distribution pattern of galaxies in this plane. In addition, we reproduce the observed AUV versus β relation and explore its dependence on galaxy stellar mass, providing an explanation for the observed complexity of this relation. We also find a deficiency in heavily attenuated, UV red galaxies in the simulations. Finally, we provide predictions for the dust attenuation curves of galaxies at z = 2−6 and investigate their dependence on galaxy colours and stellar masses. The attenuation curves are steeper in galaxies at higher redshifts, with bluer colours, or with lower stellar masses. We attribute these predicted trends to dust geometry. Overall, our results are consistent with present observations of high-redshift galaxies. Future James Webb Space Telecope observations will further test these predictions. 
    more » « less