Abstract We discuss various applications of a uniform vanishing result for the graded components of the finite length Koszul module associated to a subspace$$K\subseteq \bigwedge ^2 V$$ , whereVis a vector space. Previously Koszul modules of finite length have been used to give a proof of Green’s Conjecture on syzygies of generic canonical curves. We now give applications to effective stabilization of cohomology of thickenings of algebraic varieties, divisors on moduli spaces of curves, enumerative geometry of curves onK3 surfaces and to skew-symmetric degeneracy loci. We also show that the instability of sufficiently positive rank 2 vector bundles on curves is governed by resonance and give a splitting criterion.
more »
« less
Higher resonance schemes and Koszul modules of simplicial complexes
Abstract Each connected graded, graded-commutative algebraAof finite type over a field$$\Bbbk $$ of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the(higher) Koszul modulesofA. In this note, we investigate the geometry of the support loci of these modules, called theresonance schemesof the algebra. When$$A=\Bbbk \langle \Delta \rangle $$ is the exterior Stanley–Reisner algebra associated to a finite simplicial complex$$\Delta $$ , we show that the resonance schemes are reduced. We also compute the Hilbert series of the Koszul modules and give bounds on the regularity and projective dimension of these graded modules. This leads to a relationship between resonance and Hilbert series that generalizes a known formula for the Chen ranks of a right-angled Artin group.
more »
« less
- Award ID(s):
- 2302341
- PAR ID:
- 10497699
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Algebraic Combinatorics
- Volume:
- 59
- Issue:
- 4
- ISSN:
- 0925-9899
- Format(s):
- Medium: X Size: p. 787-805
- Size(s):
- p. 787-805
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ , for all momentakon the Fermi surface of every bandα. While there are a variety of techniques for determining$$|{\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha |$$ , no general method existed to measure the signed values of$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ . Recently, however, a technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns, centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting allk-space regions where$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ has the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured, is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ it generates to the$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ determined from single-atom scattering in FeSe where s±energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ of opposite sign.more » « less
-
A<sc>bstract</sc> Euclidean path integrals for UV-completions ofd-dimensional bulk quantum gravity were recently studied in [1] by assuming that they satisfy axioms of finiteness, reality, continuity, reflection-positivity, and factorization. Sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ of the resulting Hilbert space were then defined for any (d− 2)-dimensional surface$$ \mathcal{B} $$ , where$$ \mathcal{B} $$ may be thought of as the boundary ∂Σ of a bulk Cauchy surface in a corresponding Lorentzian description, and where$$ \mathcal{B} $$ includes the specification of appropriate boundary conditions for bulk fields. Cases where$$ \mathcal{B} $$ was the disjoint unionB⊔Bof two identical (d− 2)-dimensional surfacesBwere studied in detail and, after the inclusion of finite-dimensional ‘hidden sectors,’ were shown to provide a Hilbert space interpretation of the associated Ryu-Takayanagi entropy. The analysis was performed by constructing type-I von Neumann algebras$$ {\mathcal{A}}_L^B $$ ,$$ {\mathcal{A}}_R^B $$ that act respectively at the left and right copy ofBinB⊔B. Below, we consider the case of general$$ \mathcal{B} $$ , and in particular for$$ \mathcal{B} $$ =BL⊔BRwithBL,BRdistinct. For anyBR, we find that the von Neumann algebra atBLacting on the off-diagonal Hilbert space sector$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ is a central projection of the corresponding type-I von Neumann algebra on the ‘diagonal’ Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ . As a result, the von Neumann algebras$$ {\mathcal{A}}_L^{B_L} $$ ,$$ {\mathcal{A}}_R^{B_L} $$ defined in [1] using the diagonal Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ turn out to coincide precisely with the analogous algebras defined using the full Hilbert space of the theory (including all sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ ). A second implication is that, for any$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ , including the same hidden sectors as in the diagonal case again provides a Hilbert space interpretation of the Ryu-Takayanagi entropy. We also show the above central projections to satisfy consistency conditions that lead to a universal central algebra relevant to all choices ofBLandBR.more » « less
-
Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ -action. First, we find a two-parameter family$$X_{k,l}$$ of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ is obtained via direct limit$$l\longrightarrow \infty $$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.more » « less
-
Abstract The azimuthal ($$\Delta \varphi $$ ) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at$$\sqrt{s_{\mathrm{{NN}}}} = 5.02$$ TeV. Results are reported for electrons with transverse momentum$$4<16$$ $$\textrm{GeV}/c$$ and pseudorapidity$$|\eta |<0.6$$ . The associated charged particles are selected with transverse momentum$$1<7$$ $$\textrm{GeV}/c$$ , and relative pseudorapidity separation with the leading electron$$|\Delta \eta | < 1$$ . The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The$$\Delta \varphi $$ distribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators.more » « less