skip to main content


Title: Evolution and distribution of superbubbles in simulated Milky Way-like galaxies
ABSTRACT

Stellar feedback plays a crucial role in regulating baryon cycles of a galactic ecosystem, and may manifest itself in the formation of superbubbles in the interstellar medium. In this work, we used a set of high-resolution simulations to systematically study the properties and evolution of superbubbles in galactic environments. The simulations were based on the SMUGGLE galaxy formation framework using the hydrodynamical moving-mesh code arepo, reaching a spatial resolution of $\sim 4 \, \rm pc$ and mass resolution of $\sim 10^3 \, \rm M_{\odot }$. We identified superbubbles and tracked their time evolution using the parent stellar associations within the bubbles. The X-ray luminosity-size distribution of superbubbles in the fiducial run is largely consistent with the observations of nearby galaxies. The size of superbubbles shows a double-peaked distribution, with the peaks attributed to early feedback (radiative and stellar wind feedback) and supernova feedback. The early feedback tends to suppress the subsequent supernova feedback, and it is strongly influenced by star formation efficiency, which regulates the environmental density. Our results show that the volume filling factor of hot gas (T > 105.5 K) is about $12~{{\ \rm per\ cent}}$ averaged over a region of 4 kpc in height and 20 kpc in radius centred on the disc of the galaxy. Overall, the properties of superbubbles are sensitive to the choice of subgrid galaxy formation models and can, therefore, be used to constrain these models.

 
more » « less
NSF-PAR ID:
10497708
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
529
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4073-4086
Size(s):
["p. 4073-4086"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2. 
    more » « less
  2. ABSTRACT

    Previous studies of fueling black holes in galactic nuclei have argued (on scales ${\sim}0.01{-}1000\,$pc) accretion is dynamical with inflow rates $\dot{M}\sim \eta \, M_{\rm gas}/t_{\rm dyn}$ in terms of gas mass Mgas, dynamical time tdyn, and some η. But these models generally neglected expulsion of gas by stellar feedback, or considered extremely high densities where expulsion is inefficient. Studies of star formation, however, have shown on sub-kpc scales the expulsion efficiency fwind = Mejected/Mtotal scales with the gravitational acceleration as $(1-f_{\rm wind})/f_{\rm wind}\sim \bar{a}_{\rm grav}/\langle \dot{p}/m_{\ast }\rangle \sim \Sigma _{\rm eff}/\Sigma _{\rm crit}$ where $\bar{a}_{\rm grav}\equiv G\, M_{\rm tot}(\lt r)/r^{2}$ and $\langle \dot{p}/m_{\ast }\rangle$ is the momentum injection rate from young stars. Adopting this as the simplest correction for stellar feedback, $\eta \rightarrow \eta \, (1-f_{\rm wind})$, we show this provides a more accurate description of simulations with stellar feedback at low densities. This has immediate consequences, predicting the slope and normalization of the MBH − σ and MBH − Mbulge relation, LAGN −SFR relations, and explanations for outliers in compact Es. Most strikingly, because star formation simulations show expulsion is efficient (fwind ∼ 1) below total-mass surface density $M_{\rm tot}/\pi \, r^{2}\lt \Sigma _{\rm crit}\sim 3\times 10^{9}\, \mathrm{M}_{\odot }\, {\rm kpc^{-2}}$ (where $\Sigma _{\rm crit}=\langle \dot{p}/m_{\ast }\rangle /(\pi \, G)$), BH mass is predicted to specifically trace host galaxy properties above a critical surface brightness Σcrit (B-band $\mu _{\rm B}^{\rm crit}\sim 19\, {\rm mag\, arcsec^{-2}}$). This naturally explains why BH masses preferentially reflect bulge properties or central surface densities (e.g. $\Sigma _{1\, {\rm kpc}}$), not ‘total’ galaxy properties.

     
    more » « less
  3. ABSTRACT

    We employ a series of high-resolution zoom-in cosmological simulations to analyse the emerging morphology of main galaxies in dark matter haloes at z ≳ 2. We choose haloes of similar masses, ${\rm log}\, M_{\rm vir}/{\rm M_\odot }\sim 11.65\pm 0.05$, at the target zf = 6, 4, and 2. The rationale for this choice allows us to analyse how the different growth rate in these haloes propagates down to galaxy scales, affecting their basic parameters. Halos were embedded in high/low overdensity regions, and two versions of a galactic wind feedback were employed. Our main results are: (1) Although our galaxies evolve in different epochs, their global parameters remain within narrow range. Their morphology, kinematics, and stellar populations differ substantially, yet all host sub-kpc stellar bars; (2) The star formation rates appear higher for larger zf; (3) Bulges and stellar spheroids were separated by stellar kinematics, discy bulges were revealed using the Sersic method and photometry.The bulge-to-total mass ratios appear independent of the last merger time for all zf. The spheroid-to-total mas ratios lie within ∼0.5–0.8; (4) The synthetic redshifted, pixelized, and PSF-degraded JWST images allow detection of stellar discs at all zf. (5) Based on the kinematic decomposition, rotational support in discs depends on the feedback type, but increases with decreasing zf; (6) Finally, the ALMA images detect discs at all zf, but spiral structure is detectable in zf = 2 galaxies. Moreover, galaxies follow the Tully–Fisher relation, being separated only by the galactic wind feedback.

     
    more » « less
  4. ABSTRACT We introduce a suite of cosmological volume simulations to study the evolution of galaxies as part of the Feedback in Realistic Environments project. FIREbox, the principal simulation of the present suite, provides a representative sample of galaxies (∼1000 galaxies with $M_{\rm star}\gt 10^8\, M_\odot$ at z  = 0) at a resolution ($\Delta {}x\sim {}20\, {\rm pc}$ , $m_{\rm b}\sim {}6\times {}10^4\, M_\odot$ ) comparable to state-of-the-art galaxy zoom-in simulations. FIREbox captures the multiphase nature of the interstellar medium in a fully cosmological setting (L = 22.1 Mpc) thanks to its exceptionally high dynamic range (≳106) and the inclusion of multichannel stellar feedback. Here, we focus on validating the simulation predictions by comparing to observational data. We find that star formation rates, gas masses, and metallicities of simulated galaxies with $M_{\rm star}\lt 10^{10.5-11}\, M_\odot$ broadly agree with observations. These galaxy scaling relations extend to low masses ($M_{\rm star}\sim {}10^7\, M_\odot$ ) and follow a (broken) power-law relationship. Also reproduced are the evolution of the cosmic HI density and the HI column density distribution at z ∼ 0–5. At low z , FIREbox predicts a peak in the stellar-mass–halo-mass relation but also a higher abundance of massive galaxies and a higher cosmic star formation rate density than observed, showing that stellar feedback alone is insufficient to reproduce the properties of massive galaxies at late times. Given its high resolution and sample size, FIREbox offers a baseline prediction of galaxy formation theory in a ΛCDM Universe while also highlighting modelling challenges to be addressed in next-generation galaxy simulations. 
    more » « less
  5. ABSTRACT Surveys of the Milky Way (MW) and M31 enable detailed studies of stellar populations across ages and metallicities, with the goal of reconstructing formation histories across cosmic time. These surveys motivate key questions for galactic archaeology in a cosmological context: When did the main progenitor of an MW/M31-mass galaxy form, and what were the galactic building blocks that formed it? We investigate the formation times and progenitor galaxies of MW/M31-mass galaxies using the Feedback In Realistic Environments-2 cosmological simulations, including six isolated MW/M31-mass galaxies and six galaxies in Local Group (LG)-like pairs at z = 0. We examine main progenitor ‘formation’ based on two metrics: (1) transition from primarily ex-situ to in-situ stellar mass growth and (2) mass dominance compared to other progenitors. We find that the main progenitor of an MW/M31-mass galaxy emerged typically at z ∼ 3–4 ($11.6\!\!-\!\!12.2\, \rm {Gyr}$ ago), while stars in the bulge region (inner 2 kpc) at z = 0 formed primarily in a single main progenitor at z ≲ 5 (${\lesssim} \!12.6\, \rm {Gyr}$ ago). Compared with isolated hosts, the main progenitors of LG-like paired hosts emerged significantly earlier (Δz ∼ 2, $\Delta t\!\sim \!1.6\, \rm {Gyr}$), with ∼4× higher stellar mass at all z ≳ 4 (${\gtrsim} \!12.2\, \rm {Gyr}$ ago). This highlights the importance of environment in MW/M31-mass galaxy formation, especially at early times. On average, about 100 galaxies with $\rm {\it{ M}}_\rm {star}\!\gtrsim \!10^5\, \rm {M}_\odot$ went into building a typical MW/M31-mass system. Thus, surviving satellites represent a highly incomplete census (by ∼5×) of the progenitor population. 
    more » « less