We describe the results of a new reverberation mapping program focused on the nearby Seyfert galaxy NGC 3227. Photometric and spectroscopic monitoring was carried out from 2022 December to 2023 June with the Las Cumbres Observatory network of telescopes. We detected time delays in several optical broad emission lines, with H
We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of data previously presented in Vuissoz et al.), five seasons of overlapping data from the Mercator telescope (269 nights), and 12 seasons of monitoring data from the US Naval Observatory, Flagstaff Station at lower cadence (80 nights). We update the 2007 time-delay measurement for SDSS1650 with these new data, finding a time delay of
- Award ID(s):
- 2007680
- PAR ID:
- 10497712
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 964
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 173
- Size(s):
- Article No. 173
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract β having the longest delay at days and Heii having the shortest delay with days. We also detect velocity-resolved behavior of the Hβ emission line, with different line-of-sight velocities corresponding to different observed time delays. Combining the integrated Hβ time delay with the width of the variable component of the emission line and a standard scale factor suggests a black hole mass ofM ⊙. Modeling of the full velocity-resolved response of the Hβ emission line with the phenomenological codeCARAMEL finds a similar mass ofM ⊙and suggests that the Hβ -emitting broad-line region (BLR) may be represented by a biconical or flared disk structure that we are viewing at an inclination angle ofθ i ≈ 33° and with gas motions that are dominated by rotation. The new photoionization-based BLR modeling toolBELMAC finds general agreement with the observations when assuming the best-fitCARAMEL results; however,BELMAC prefers a thick-disk geometry and kinematics that are equally composed of rotation and inflow. Both codes infer a radially extended and flattened BLR that is not outflowing. -
Abstract We measure the correlation between black hole mass
M BHand host stellar massM *for a sample of 38 broad-line quasars at 0.2 ≲z ≲ 0.8 (median redshiftz med= 0.5). The black hole masses are derived from a dedicated reverberation mapping program for distant quasars, and the stellar masses are derived from two-band optical+IR Hubble Space Telescope imaging. Most of these quasars are well centered within ≲1 kpc from the host galaxy centroid, with only a few cases in merging/disturbed systems showing larger spatial offsets. Our sample spans two orders of magnitude in stellar mass (∼109–1011M ⊙) and black hole mass (∼107–109M ⊙) and reveals a significant correlation between the two quantities. We find a best-fit intrinsic (i.e., selection effects corrected)M BH–M *,hostrelation of , with an intrinsic scatter of dex. Decomposing our quasar hosts into bulges and disks, there is a similarM BH–M *,bulgerelation with slightly larger scatter, likely caused by systematic uncertainties in the bulge–disk decomposition. TheM BH–M *,hostrelation atz med= 0.5 is similar to that in local quiescent galaxies, with negligible evolution over the redshift range probed by our sample. With direct black hole masses from reverberation mapping and the large dynamical range of the sample, selection biases do not appear to affect our conclusions significantly. Our results, along with other samples in the literature, suggest that the locally measured black hole mass–host stellar mass relation is already in place atz ∼ 1. -
Abstract We present 10 seasons of Sloan Digital Sky Survey
r -band monitoring observations and five seasons ofH -band observations of the two-image system FBQ J0951+2635 from the Kaj Strand Astrometric Reflector at the United States Naval Observatory, Flagstaff Station. We supplement our light curves with six seasons of monitoring data from the literature to yield a 10 + 6 season combined data set, which we analyzed with our Monte Carlo microlensing analysis routine to generate constraints on the structure of this system’s continuum emission source and the properties of the lens galaxy. Complementing our optical light curves with the five-season near-infrared light curves, we ran a joint Monte Carlo analysis to measure the size of the continuum emission region at both wavelengths, yielding log(r 1/2cm−1) = in ther band and in theH band at rest wavelengths of 2744 and 7254 Å, respectively, correcting for an assumed inclination angle of 60°. Modeling the accretion disk temperature profile as a power lawT (r ) ∝r −β , we successfully constrain the slope for FBQ J0951+2635 to , shallower than, but nominally consistent with, the predictions of standard thin-disk theory,β = 0.75. -
Abstract We present the results of a new reverberation mapping campaign for the broad-line active galactic nucleus (AGN) in the edge-on spiral IC 4329A. Monitoring of the optical continuum with
V- band photometry and broad emission-line flux variability with moderate-resolution spectroscopy allowed emission-line light curves to be measured for Hβ , Hγ , and Heii λ 4686. We find a time delay of days for Hβ , a similar time delay of days for Hγ , and an unresolved time delay of days for Heii . The time delay for Hβ is consistent with the predicted value from the relationship between AGN luminosity and broad-line region radius, after correction for the ∼2.4 mag of intrinsic extinction at 5100 Å. Combining the measured time delay for Hβ with the broad emission-line width and an adopted value of 〈f 〉 = 4.8, we find a central supermassive black hole mass ofM ⊙. Velocity-resolved time delays were measured across the broad Hβ emission-line profile and may be consistent with an “M”-like shape. Modeling of the full reverberation response of Hβ was able to provide only modest constraints on some parameters, but does exhibit agreement with the black hole mass and average time delay. The models also suggest that the AGN structure is misaligned by a large amount from the edge-on galaxy disk. This is consistent with expectations from the unified model of AGNs, in which broad emission lines are expected to be visible only for AGNs that are viewed at relatively face-on inclinations. -
Abstract We present the
z ≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz ≈ 5.7–6.2, with −28 ≲M 1450≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez ≈ 6 QLF over −28 ≲M 1450≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z ) ∝ 10k (z −6);k = −0.7), we use a maximum likelihood method to model our data. We find a break magnitude of , a faint-end slope of , and a steep bright-end slope of . Based on our new QLF model, we determine the quasar comoving spatial density atz ≈ 6 to be . In comparison with the literature, we find the quasar density to evolve with a constant value ofk ≈ −0.7, fromz ≈ 7 toz ≈ 4. Additionally, we derive an ionizing emissivity of , based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. atz ≈ 6, we calculate an Hi photoionizing rate of ΓH I(z = 6) ≈ 6 × 10−16s−1, strongly disfavoring a dominant role of quasars in hydrogen reionization.