skip to main content


This content will become publicly available on October 5, 2024

Title: Intracellular Salmonella delivery of an exogenous immunization antigen refocuses CD8 T cells against cancer cells, eliminates pancreatic tumors and forms antitumor immunity
Introduction

Immunotherapies have shown great promise, but are not effective for all tumors types and are effective in less than 3% of patients with pancreatic ductal adenocarcinomas (PDAC). To make an immune treatment that is effective for more cancer patients and those with PDAC specifically, we genetically engineered Salmonella to deliver exogenous antigens directly into the cytoplasm of tumor cells. We hypothesized that intracellular delivery of an exogenous immunization antigen would activate antigen-specific CD8 T cells and reduce tumors in immunized mice.

Methods

To test this hypothesis, we administered intracellular delivering (ID) Salmonella that deliver ovalbumin as a model antigen into tumor-bearing, ovalbumin-vaccinated mice. ID Salmonella delivers antigens by autonomously lysing in cells after the induction of cell invasion.

Results

We showed that the delivered ovalbumin disperses throughout the cytoplasm of cells in culture and in tumors. This delivery into the cytoplasm is essential for antigen cross-presentation. We showed that co-culture of ovalbumin-recipient cancer cells with ovalbumin-specific CD8 T cells triggered a cytotoxic T cell response. After the adoptive transfer of OT-I CD8 T cells, intracellular delivery of ovalbumin reduced tumor growth and eliminated tumors. This effect was dependent on the presence of the ovalbumin-specific T cells. Following vaccination with the exogenous antigen in mice, intracellular delivery of the antigen cleared 43% of established KPC pancreatic tumors, increased survival, and prevented tumor re-implantation.

Discussion

This response in the immunosuppressive KPC model demonstrates the potential to treat tumors that do not respond to checkpoint inhibitors, and the response to re-challenge indicates that new immunity was established against intrinsic tumor antigens. In the clinic, ID Salmonella could be used to deliver a protein antigen from a childhood immunization to refocus pre-existing T cell immunity against tumors. As an off-the-shelf immunotherapy, this bacterial system has the potential to be effective in a broad range of cancer patients.

 
more » « less
Award ID(s):
2035560
NSF-PAR ID:
10497752
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Frontiers Media SA
Date Published:
Journal Name:
Frontiers in Immunology
Volume:
14
ISSN:
1664-3224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The microenvironment that surrounds pancreatic ductal adenocarcinoma (PDAC) is profoundly desmoplastic and immunosuppressive. Understanding triggers of immunosuppression during the process of pancreatic tumorigenesis would aid in establishing targets for effective prevention and therapy. Here, we interrogated differential molecular mechanisms dependent on cell of origin and subtype that promote immunosuppression during PDAC initiation and in established tumors. Transcriptomic analysis of cell-of-origin–dependent epithelial gene signatures revealed that Nt5e/CD73, a cell-surface enzyme required for extracellular adenosine generation, is one of the top 10% of genes overexpressed in murine tumors arising from the ductal pancreatic epithelium as opposed to those rising from acinar cells. These findings were confirmed by IHC and high-performance liquid chromatography. Analysis in human PDAC subtypes indicated that high Nt5e in murine ductal PDAC models overlaps with high NT5E in human PDAC squamous and basal subtypes, considered to have the highest immunosuppression and worst prognosis. Multiplex immunofluorescent analysis showed that activated CD8+ T cells in the PDAC tumor microenvironment express high levels of CD73, indicating an opportunity for immunotherapeutic targeting. Delivery of CD73 small-molecule inhibitors through various delivery routes reduced tumor development and growth in genetically engineered and syngeneic mouse models. In addition, the adenosine receptor Adora2b was a determinant of adenosine-mediated immunosuppression in PDAC. These findings highlight a molecular trigger of the immunosuppressive PDAC microenvironment elevated in the ductal cell of origin, linking biology with subtype classification, critical components for PDAC immunoprevention and personalized approaches for immunotherapeutic intervention. Significance: Ductal-derived pancreatic tumors have elevated epithelial and CD8+GZM+ T-cell CD73 expression that confers sensitivity to small-molecule inhibition of CD73 or Adora2b to promote CD8+ T-cell–mediated tumor regression. See related commentary by DelGiorno, p. 977 
    more » « less
  2. Although immune checkpoint inhibitors (ICIs), such as anti–programmed cell death protein–1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+T cell populations specific for melanocyte antigens was observed only in patients who responded to anti–PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti–PD-1 efficacy in two independent approaches: introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti–PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.

     
    more » « less
  3. Abstract

    Critical cancer pathways often cannot be targeted because of limited efficiency crossing cell membranes. Here we report the development of a Salmonella-based intracellular delivery system to address this challenge. We engineer genetic circuits that (1) activate the regulatorflhDCto drive invasion and (2) induce lysis to release proteins into tumor cells. Released protein drugs diffuse from Salmonella containing vacuoles into the cellular cytoplasm where they interact with their therapeutic targets. Control of invasion withflhDCincreases delivery over 500 times. The autonomous triggering of lysis after invasion makes the platform self-limiting and prevents drug release in healthy organs. Bacterial delivery of constitutively active caspase-3 blocks the growth of hepatocellular carcinoma and lung metastases, and increases survival in mice. This success in targeted killing of cancer cells provides critical evidence that this approach will be applicable to a wide range of protein drugs for the treatment of solid tumors.

     
    more » « less
  4. Abstract

    Cancer immunotherapies have reshaped the paradigm for cancer treatment over the past decade. Among them, therapeutic cancer vaccines that aim to modulate antigen‐presenting cells and subsequent T cell priming processes are among the first FDA‐approved cancer immunotherapies. However, despite showing benign safety profiles and the capability to generate antigen‐specific humoral and cellular responses, cancer vaccines have been limited by the modest therapeutic efficacy, especially for immunologically cold solid tumors. One key challenge lies in the identification of tumor‐specific antigens, which involves a costly and lengthy process of tumor cell isolation, DNA/RNA extraction, sequencing, mutation analysis, epitope prediction, peptide synthesis, and antigen screening. To address these issues, in situ cancer vaccines have been actively pursued to generate endogenous antigens directly from tumors and utilize the generated tumor antigens to elicit potent cytotoxic T lymphocyte (CTL) response. Biomaterials‐based in situ cancer vaccines, in particular, have achieved significant progress by taking advantage of biomaterials that can synergize antigens and adjuvants, troubleshoot delivery issues, home, and manipulate immune cells in situ. This review will provide an overview of biomaterials‐based in situ cancer vaccines, either living or artificial materials, under development or in the clinic, and discuss the design criteria for in situ cancer vaccines.

     
    more » « less
  5.  
    more » « less