skip to main content


This content will become publicly available on February 16, 2025

Title: Toward universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN
Abstract

Analysis of single-cell datasets generated from diverse organisms offers unprecedented opportunities to unravel fundamental evolutionary processes of conservation and diversification of cell types. However, interspecies genomic differences limit the joint analysis of cross-species datasets to homologous genes. Here we present SATURN, a deep learning method for learning universal cell embeddings that encodes genes’ biological properties using protein language models. By coupling protein embeddings from language models with RNA expression, SATURN integrates datasets profiled from different species regardless of their genomic similarity. SATURN can detect functionally related genes coexpressed across species, redefining differential expression for cross-species analysis. Applying SATURN to three species whole-organism atlases and frog and zebrafish embryogenesis datasets, we show that SATURN can effectively transfer annotations across species, even when they are evolutionarily remote. We also demonstrate that SATURN can be used to find potentially divergent gene functions between glaucoma-associated genes in humans and four other species.

 
more » « less
Award ID(s):
1918940 1835598
PAR ID:
10497823
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Methods
Date Published:
Journal Name:
Nature Methods
ISSN:
1548-7091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. <bold>Abstract</bold>

    Deciphering the relationship between a gene and its genomic context is fundamental to understanding and engineering biological systems. Machine learning has shown promise in learning latent relationships underlying the sequence-structure-function paradigm from massive protein sequence datasets. However, to date, limited attempts have been made in extending this continuum to include higher order genomic context information. Evolutionary processes dictate the specificity of genomic contexts in which a gene is found across phylogenetic distances, and these emergent genomic patterns can be leveraged to uncover functional relationships between gene products. Here, we train a genomic language model (gLM) on millions of metagenomic scaffolds to learn the latent functional and regulatory relationships between genes. gLM learns contextualized protein embeddings that capture the genomic context as well as the protein sequence itself, and encode biologically meaningful and functionally relevant information (e.g. enzymatic function, taxonomy). Our analysis of the attention patterns demonstrates that gLM is learning co-regulated functional modules (i.e. operons). Our findings illustrate that gLM’s unsupervised deep learning of the metagenomic corpus is an effective and promising approach to encode functional semantics and regulatory syntax of genes in their genomic contexts and uncover complex relationships between genes in a genomic region.

     
    more » « less
  2. Abstract

    We present Bisque, a tool for estimating cell type proportions in bulk expression. Bisque implements a regression-based approach that utilizes single-cell RNA-seq (scRNA-seq) or single-nucleus RNA-seq (snRNA-seq) data to generate a reference expression profile and learn gene-specific bulk expression transformations to robustly decompose RNA-seq data. These transformations significantly improve decomposition performance compared to existing methods when there is significant technical variation in the generation of the reference profile and observed bulk expression. Importantly, compared to existing methods, our approach is extremely efficient, making it suitable for the analysis of large genomic datasets that are becoming ubiquitous. When applied to subcutaneous adipose and dorsolateral prefrontal cortex expression datasets with both bulk RNA-seq and snRNA-seq data, Bisque replicates previously reported associations between cell type proportions and measured phenotypes across abundant and rare cell types. We further propose an additional mode of operation that merely requires a set of known marker genes.

     
    more » « less
  3. Abstract

    The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies. This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment, bridging the gap between transcriptomic data analysis and drug discovery. We initiated our approach by conducting differential gene expression analysis on addiction-related transcriptomic data to identify key genes. We propose a novel topological differentiation to identify key genes from a protein–protein interaction network derived from DEGs. This method utilizes persistent Laplacians to accurately single out pivotal nodes within the network, conducting this analysis in a multiscale manner to ensure high reliability. Through rigorous literature validation, pathway analysis and data-availability scrutiny, we identified three pivotal molecular targets, mTOR, mGluR5 and NMDAR, for drug repurposing from DrugBank. We crafted machine learning models employing two natural language processing (NLP)-based embeddings and a traditional 2D fingerprint, which demonstrated robust predictive ability in gauging binding affinities of DrugBank compounds to selected targets. Furthermore, we elucidated the interactions of promising drugs with the targets and evaluated their drug-likeness. This study delineates a multi-faceted and comprehensive analytical framework, amalgamating bioinformatics, topological data analysis and machine learning, for drug repurposing in addiction treatment, setting the stage for subsequent experimental validation. The versatility of the methods we developed allows for applications across a range of diseases and transcriptomic datasets.

     
    more » « less
  4. Abstract

    Genomic deep learning models can predict genome-wide epigenetic features and gene expression levels directly from DNA sequence. While current models perform well at predicting gene expression levels across genes in different cell types from the reference genome, their ability to explain expression variation between individuals due tocis-regulatory genetic variants remains largely unexplored. Here, we evaluate four state-of-the-art models on paired personal genome and transcriptome data and find limited performance when explaining variation in expression across individuals. In addition, models often fail to predict the correct direction of effect ofcis-regulatory genetic variation on expression.

     
    more » « less
  5. Abstract Motivation

    Spatially resolved single-cell transcriptomics have provided unprecedented insights into gene expression in situ, particularly in the context of cell interactions or organization of tissues. However, current technologies for profiling spatial gene expression at single-cell resolution are generally limited to the measurement of a small number of genes. To address this limitation, several algorithms have been developed to impute or predict the expression of additional genes that were not present in the measured gene panel. Current algorithms do not leverage the rich spatial and gene relational information in spatial transcriptomics. To improve spatial gene expression predictions, we introduce Spatial Propagation and Reinforcement of Imputed Transcript Expression (SPRITE) as a meta-algorithm that processes predictions obtained from existing methods by propagating information across gene correlation networks and spatial neighborhood graphs.

    Results

    SPRITE improves spatial gene expression predictions across multiple spatial transcriptomics datasets. Furthermore, SPRITE predicted spatial gene expression leads to improved clustering, visualization, and classification of cells. SPRITE can be used in spatial transcriptomics data analysis to improve inferences based on predicted gene expression.

    Availability and implementation

    The SPRITE software package is available at https://github.com/sunericd/SPRITE. Code for generating experiments and analyses in the manuscript is available at https://github.com/sunericd/sprite-figures-and-analyses.

     
    more » « less