skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Local cation ordering in compositionally complex Ruddlesden–Popper n = 1 oxides

The Ruddlesden–Popper (RP) layered perovskite structure is of great interest due to its inherent tunability, and the emergence and growth of the compositionally complex oxide (CCO) concept endows the RP family with further possibilities. Here, a comprehensive assessment of thermodynamic stabilization, local order/disorder, and lattice distortion was performed in the first two reported examples of lanthanum-deficient Lan+1BnO3n+1 (n = 1, B = Mg, Co, Ni, Cu, Zn) obtained via various processing conditions. Chemical short-range order (CSRO) at the B-site and the controllable excess interstitial oxygen (δ) in RP-CCOs are uncovered by neutron pair distribution function analysis. Reverse Monte Carlo analysis of the data, Metropolis Monte Carlo simulations, and extended x-ray absorption fine structure analysis implies a modest degree of magnetic element segregation on the local scale. Further, ab initio molecular dynamics simulations results obtained from special quasirandom structure disagree with experimentally observed CSRO but confirm Jahn–Teller distortion of CuO6 octahedra. These findings highlight potential opportunities to control local order/disorder and excess interstitial oxygen in layered RP-CCOs and demonstrate a high degree of freedom for tailoring application-specific properties. They also suggest a need for expansion of theoretical and data modeling approaches in order to meet the innate challenges of CCO and related high-entropy phases.

 
more » « less
Award ID(s):
2145174
PAR ID:
10497900
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
APL Materials
Volume:
11
Issue:
5
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Compositionally complex oxides (CCOs) are an emerging class of materials encompassing high entropy and entropy stabilized oxides. These promising advanced materials leverage tunable chemical bond structure, lattice distortion, and chemical disorder for unprecedented properties. Grain boundary (GB) and point defect segregation to GBs are relatively understudied in CCOs even though they can govern macroscopic material properties. For example, GB segregation can govern local chemical (dis)order and point defect distribution, playing a critical role in electrochemical reaction kinetics, and charge and mass transport in solid electrolytes. However, compared with conventional oxides, GBs in multi-cation CCO systems are expected to exhibit more complex segregation phenomena and, thus, prove more difficult to tune through GB design strategies. Here, GB segregation was studied in a model perovskite CCO LaFe0.7Ni0.1Co0.1Cu0.05Pd0.05O3−x textured thin film by (sub-)atomic-resolution scanning transmission electron microscopy imaging and spectroscopy. It is found that GB segregation is correlated with cation reducibility—predicted by an Ellingham diagram—as Pd and Cu segregate to GBs rich in oxygen vacancies (VO··). Furthermore, Pd and Cu segregation is highly sensitive to the concentration and spatial distribution of VO·· along the GB plane, as well as fluctuations in atomic structure and elastic strain induced by GB local disorder, such as dislocations. This work offers a perspective of controlling segregation concentration of CCO cations to GBs by tuning reducibility of CCO cations and oxygen deficiency, which is expected to guide GB design in CCOs.

     
    more » « less
  2. null (Ed.)
    Electron probe microanalysis is a nondestructive technique widely used to determine the elemental composition of bulk samples. This was extended to layered specimens, with the development of appropriate software. The traditional quantification method requires the use of matrix correction procedures based upon models of the ionization depth distribution, the so-called ϕ ( ρz ) distribution. Most of these models have led to commercial quantification programs but only few of them allow the quantification of layered specimens. Therefore, we developed BadgerFilm, a free open-source thin film program available to the general public. This program implements a documented ϕ ( ρz ) model as well as algorithms to calculate fluorescence in bulk and thin film samples. Part 1 of the present work aims at describing the operation of the implemented ϕ ( ρz ) distribution model and validating its implementation against experimental measurements and Monte Carlo simulations on bulk samples. The program has the ability to predict absolute X-ray intensities that can be directly compared to Monte Carlo simulations. We demonstrate that the implemented model works very well for bulk materials. And as will be shown in Part 2, BadgerFilm predictions for thin film specimens are also shown to be in good agreements with experimental and Monte Carlo results. 
    more » « less
  3. A symmetry mode analysis yields 47 symmetrically distinct patterns of octahedral tilting in hybrid organic–inorganic layered perovskites that adopt then= 1 Ruddlesden–Popper (RP) structure. The crystal structures of compounds belonging to this family are compared with the predictions of the symmetry analysis. Approximately 88% of the 140 unique structures have symmetries that agree with those expected based on octahedral tilting alone, while the remaining compounds have additional structural features that further lower the symmetry, such as asymmetric packing of bulky organic cations, distortions of metal-centered octahedra or a shift of the inorganic layers that deviates from thea/2 +b/2 shift associated with the RP structure. The structures of real compounds are heterogeneously distributed amongst the various tilt systems, with only 9 of the 47 tilt systems represented. No examples of in-phase ψ-tilts about theaand/orbaxes of the undistorted parent structure were found, while at the other extreme ∼66% of the known structures possess a combination of out-of-phase ϕ-tilts about theaand/orbaxes and θ-tilts (rotations) about thecaxis. The latter combination leads to favorable hydrogen bonding interactions that accommodate the chemically inequivalent halide ions within the inorganic layers. In some compounds, primarily those that contain either Pb2+or Sn2+, favorable hydrogen bonding interactions can also be achieved by distortions of the octahedra in combination with θ-tilts.

     
    more » « less
  4. Abstract

    To increase diversity and realism, surface bidirectional scattering distribution functions (BSDFs) are often modelled as consisting of multiple layers, but accurately evaluating layered BSDFs while accounting for all light transport paths is a challenging problem. Recently, Guoet al. [GHZ18] proposed an accurate and general position‐free Monte Carlo method, but this method introduces variance that leads to longer render time compared to non‐stochastic layered models. We improve the previous work by presenting two new sampling strategies,pair‐product samplingandmultiple‐product sampling. Our new methods better take advantage of the layered structure and reduce variance compared to the conventional approach of sequentially sampling one BSDF at a time. Ourpair‐product samplingstrategy importance samples the product of two BSDFs from a pair of adjacent layers. We further generalize this tomultiple‐product sampling, which importance samples the product of a chain of three or more BSDFs. In order to compute these products, we developed a new approximate Gaussian representation of individual layer BSDFs. This representation incorporates spatially varying material properties as parameters so that our techniques can support an arbitrary number of textured layers. Compared to previous Monte Carlo layering approaches, our results demonstrate substantial variance reduction in rendering isotropic layered surfaces.

     
    more » « less
  5. null (Ed.)
    ABSTRACT The abundances of neutron (n)-capture elements in the carbon-enhanced metal-poor (CEMP)-r/s stars agree with predictions of intermediate n-density nucleosynthesis, at Nn ∼ 1013–1015 cm−3, in rapidly accreting white dwarfs (RAWDs). We have performed Monte Carlo simulations of this intermediate-process (i-process) nucleosynthesis to determine the impact of (n,γ) reaction rate uncertainties of 164 unstable isotopes, from 131I to 189Hf, on the predicted abundances of 18 elements from Ba to W. The impact study is based on two representative one-zone models with constant values of Nn = 3.16 × 1014 and 3.16 × 1013 cm−3 and on a multizone model based on a realistic stellar evolution simulation of He-shell convection entraining H in a RAWD model with [Fe/H] = −2.6. For each of the selected elements, we have identified up to two (n,γ) reactions having the strongest correlations between their rate variations constrained by Hauser–Feshbach computations and the predicted abundances, with the Pearson product–moment correlation coefficients |rP| > 0.15. We find that the discrepancies between the predicted and observed abundances of Ba and Pr in the CEMP-i star CS 31062−050 are significantly diminished if the rate of 137Cs(n,γ)138Cs is reduced and the rates of 141Ba(n,γ)142Ba or 141La(n,γ)142La increased. The uncertainties of temperature-dependent β-decay rates of the same unstable isotopes have a negligible effect on the predicted abundances. One-zone Monte Carlo simulations can be used instead of computationally time-consuming multizone Monte Carlo simulations in reaction rate uncertainty studies if they use comparable values of Nn. We discuss the key challenges that RAWD simulations of i process for CEMP-i stars meet by contrasting them with recently published low-Z asymptotic giant branch (AGB) i process. 
    more » « less