skip to main content


Title: Foraging rates from metabarcoding: Predators have reduced functional responses in wild, diverse prey communities
Abstract

Functional responses describe foraging rates across prey densities and underlie many fundamental ecological processes. Most functional response knowledge comes from simplified lab experiments, but we do not know whether these experiments accurately represent foraging in nature. In addition, the difficulty of conducting multispecies functional response experiments means that it is unclear whether interaction strengths are weakened in the presence of multiple prey types. We developed a novel method to estimate wild predators' foraging rates from metabarcoding data and use this method to present functional responses for wild wolf spiders foraging on 27 prey families. These field functional responses were considerably reduced compared to lab functional responses. We further find that foraging is sometimes increased in the presence of other prey types, contrary to expectations. Our novel method for estimating field foraging rates will allow researchers to determine functional responses for wild predators and address long‐standing questions about foraging in nature.

 
more » « less
PAR ID:
10497918
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
3
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Increased turbidity and siltation caused by rock quarrying, mining, and deforestation are pervasive disturbances in aquatic systems. Turbidity interferes with vision for aquatic organisms, potentially altering predator–prey interactions.

    We studied the effects of these disturbances in Trinidadian streams by surveying predators and their shared prey both in streams with versus without quarries as well as in a focal stream before and after the establishment of a quarry. Then, to evaluate whether differential foraging success in turbid water might underlie abundance patterns of predators, we experimentally induced turbidity in mesocosms and measured predator foraging success.

    Upstream quarry presence had a dramatic effect on the benthic structure of streams, greatly increasing siltation. A substantial decrease in the abundance of a diurnal cichlid predator (Crenicichla frenata) was associated with quarry presence, while a nocturnal erytherinid predator (Hoplias malabaricus) was equally as abundant in streams with or without quarries. The density of their shared prey, the Trinidadian guppy (Poecilia reticulata) remained unchanged.

    In mesocosm trials,Crenicichlawere less successful predators with turbidity, whereasHopliasperformed equally across turbidities. These foraging success results help explain differences in demographic shifts in response to turbidity for both predators.

    By relating short‐term effects of an anthropogenically altered visual environment on species interactions to abundance patterns of predators and prey, this study helps to identify an important mechanism whereby changes to species’ visual ecology may have long‐term effects on population biology.

     
    more » « less
  2. Abstract

    Deciphering the mechanisms that underpin dietary specialization and niche partitioning is crucial to understanding the maintenance of biodiversity. New world army ants live in species‐rich assemblages throughout the Neotropics and are voracious predators of other arthropods. They are therefore an important and potentially informative group for addressing how diverse predator assemblages partition available prey resources.

    New World army ants are largely specialist predators of other ants, with each species specializing on different ant genera. However, the mechanisms of prey choice are unknown. In this study, we addressed whether the army antEciton hamatum:(a) can detect potential prey odours, (b) can distinguish between odours of prey and non‐prey and (c) can differentiate between different types of odours associated with its prey.

    Using field experiments, we tested the response of army ants to the following four odour treatments: alarm odours, dead ants, live ants and nest material. Each treatment had a unique combination of odour sources and included some movement in two of the treatments (alarm and live ants). Odour treatments were tested for both prey and non‐prey ants. These data were used to determine the degree to whichE. hamatumare using specific prey stimuli to detect potential prey and direct their foraging.

    Army ants responded strongly to odours derived from prey ants, which triggered both increased localized recruitment and slowed advancement of the raid as they targeted the odour source. Odours from non‐prey ants were largely ignored. Additionally, the army ants had the strongest response to the nest material of their preferred prey, with progressively weaker responses across the live ant, dead ant and alarm odours treatments respectively.

    This study reveals that the detection of prey odours, and especially the most persistent odours related to the prey's nest, provides a mechanism for dietary specialization in army ants. If ubiquitous across the Neotropical army ants, then this olfaction‐based ecological specialization may facilitate patterns of resource partitioning and coexistence in these diverse predator communities.

     
    more » « less
  3. Dall, Sasha (Ed.)

    Predator-induced changes in prey foraging can influence community dynamics by increasing the abundance of basal resources via a trait-mediated trophic cascade. The strength of these cascades may be altered by eco-evolutionary relationships between predators and prey, but the role of basal resources has received limited attention. We hypothesized that trait-mediated trophic cascade strength may be shaped by selection from trophic levels above and below prey. Field and laboratory experiments used snails (Nucella lapillus) from two regions in the Gulf of Maine (GoM) that vary in basal resource availability (e.g. mussels), seawater temperature, and contact history with the invasive green crab,Carcinus maenas. In field and laboratory experiments,Nucellafrom both regions foraged on mussels in the presence or absence of green crab risk cues. In the field,Nucellafrom the northern GoM, where mussels are scarce, were less responsive to risk cues and more responsive to seawater temperature than southernNucella. In the lab, however, northernNucellaforaged and grew more than southern snails in the presence of risk, but foraging and growth were similar in the absence of risk. We suggest that adaptation to basal resource availability may shape geographical variation in the strength of trait-mediated trophic cascades.

     
    more » « less
  4. Abstract

    Although experimentally simulating predator presence helps improve sample sizes in studies of free‐ranging animals, few studies have examined whether auditory playbacks and visual models produce similar results. Additionally, it is unclear if anti‐predator strategies are specific to predator hunting styles in understudied Neotropical pitheciid primates, limiting what we can generalize about this phenomenon across this taxonomic order. We conducted predator simulation experiments to assess whether wild Rylands' bald‐faced saki monkeys (Pithecia rylandsi) recognize predators based solely on acoustic cues, exhibit predator‐specific responses to different predator types, and vary responses to presentations in different sensory modes. In our playback experiments, sakis had weak responses to non‐predator control vocalizations compared to jaguar growls and harpy eagle shrieks. In most predator playbacks, subjects' first glance corresponded to the direction from which simulated predators would typically attack (above vs. below). However, although sakis exhibited appropriate movement responses to harpy playbacks (i.e., descending canopy), they exhibited no clear movement patterns when presented with jaguar playbacks. In contrast, jaguar model experiments consistently elicited fast approaches, mobbing‐style responses, and long alarm calling bouts. Thus, if we had relied on playbacks alone, we might have concluded that sakis have only generalized responses to terrestrial ambush predators. In fact, in all variables measured (e.g., latency, number of calls, and response duration), models of both predator species elicited stronger reactions than playbacks. Results indicate that bald‐faced sakis can identify predators based solely on vocalizations, but do not exhibit predator‐specific escape responses to terrestrial predators based on acoustic cues alone. The differential response to playbacks and models calls into question the reliability of using acoustic‐only stimuli to assess the specificity of anti‐predator behavior to predator hunting styles in some primate species.

     
    more » « less
  5. Abstract

    Functional responses describe how consumer foraging rates change with resource density. Despite extensive research looking at the factors underlying foraging interactions, there remains ongoing controversy about how temperature and body size control the functional response parameters space clearance (or attack) rate and handling time. Here, we investigate the effects of temperature, consumer mass, and resource mass using the largest compilation of functional responses yet assembled. This compilation contains 2,083 functional response curves covering a wide range of foragers and prey types, environmental conditions, and habitats. After accounting for experimental arena size, dimensionality of the foraging interaction, and consumer taxon, we find that both space clearance rate and handling time are optimized at intermediate temperatures (a unimodal rather than monotonic response), suggesting that the response to global climate change depends on the location of the consumer’s current temperature relative to the optimum. We further confirm that functional responses are higher and steeper for large consumers and small resources, and models using consumer and resource masses separately outperformed models using consumer:resource mass ratios, suggesting that consumer and resource body mass act independently to set interaction strengths. Lastly, we show that the extent to which foraging is affected by temperature or mass depends on the taxonomic identity of the consumer and the dimensionality of the consumer–resource interaction. We thus argue that although overall body size and temperature effects can be identified, they are not universal, and therefore food web and community modeling approaches could be improved by considering taxonomic identity along with body size and unimodal temperature effects.

     
    more » « less