ABSTRACT Decades‐old research describes dynamic interdependence among aquatic and terrestrial food webs, leading to calls for integrating cross‐ecosystem linkages with landscape ecology to evaluate dynamics of spatially‐subsidised food webs. Though development of meta‐community theory has suggested that such spatial dynamics may help sustain biodiversity, empirical data remain limited. In northern Yellowstone National Park, over a century of terrestrial wildlife dynamics, including the extirpation and subsequent reintroduction of wolves, have contributed to a habitat mosaic in which stream‐riparian ecosystems are dominated by either woody or herbaceous vegetation. In the context of this habitat mosaic, we addressed the overarching questions: (1) Are habitat mosaics associated with spatial and temporal variation in reciprocal fluxes and linked food webs and (2) how do biodiversity, organism traits and species interactions influence, and are they influenced by, that spatial and temporal variation?From 2019 to 2021, we intensively sampled eight headwater streams to characterise reciprocal fluxes of aquatic and terrestrial invertebrates and the patterns of potential responses by fish, birds, bats and spiders. We evaluated sites individually as well as how they contributed to a meta‐community.We found that local stream‐riparian ecosystems contributed to a mosaic in which reciprocal fluxes of invertebrates among local patches were asynchronous and tracked by both aquatic and terrestrial consumers in ways mediated by organism traits. Within sites, aquatic and terrestrial invertebrate fluxes were seasonally asynchronous with each other, but these patterns varied from site to site. Across the mosaic, comparisons of daily aquatic insect emergence varied from 25% to 167% among streams and did so variably throughout the year, revealing asynchronous dynamics created at the meta‐community scale. Daily inputs of terrestrial invertebrates were similarly asynchronous across the mosaic, varying from 14% to 170%. These asynchronies were positively correlated with invertebrate beta diversity and associated with varying riparian vegetation, stream temperature, and flow regimes. In turn, in situ consumers tracked the allochthonous invertebrate prey in ways that were mediated by site context (i.e., local habitat characteristics) and consumer traits (e.g., range, foraging strategy and breeding requirements).Based on these observations as an example, we infer there is not one way for food webs to be reciprocally and spatially linked, but multiple ways that can vary both across a spatial mosaic and through time. Our findings provide empirical evidence suggesting potential relationships between habitat complexity and the maintenance of biodiversity via aquatic‐terrestrial reciprocal fluxes and dynamic interdependence across mosaics.
more »
« less
Global patterns of allochthony in stream–riparian meta‐ecosystems
Abstract Ecosystems that are coupled by reciprocal flows of energy and nutrient subsidies can be viewed as a single “meta‐ecosystem.” Despite these connections, the reciprocal flow of subsidies is greatly asymmetrical and seasonally pulsed. Here, we synthesize existing literature on stream–riparian meta‐ecosystems to quantify global patterns of the amount of subsidy consumption by organisms, known as “allochthony.” These resource flows are important since they can comprise a large portion of consumer diets, but can be disrupted by human modification of streams and riparian zones. Despite asymmetrical subsidy flows, we found stream and riparian consumer allochthony to be equivalent. Although both fish and stream invertebrates rely on seasonally pulsed allochthonous resources, we find allochthony varies seasonally only for fish, being nearly three times greater during the summer and fall than during the winter and spring. We also find that consumer allochthony varies with feeding traits for aquatic invertebrates, fish, and terrestrial arthropods, but not for terrestrial vertebrates. Finally, we find that allochthony varies by climate for aquatic invertebrates, being nearly twice as great in arid climates than in tropical climates, but not for fish. These findings are critical to understanding the consequences of global change, as ecosystem connections are being increasingly disrupted.
more »
« less
- PAR ID:
- 10497922
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 27
- Issue:
- 3
- ISSN:
- 1461-023X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Ecological flows across ecosystem boundaries are typically studied at spatial scales that limit our understanding of broad geographical patterns in ecosystem linkages. Aquatic insects that metamorphose into terrestrial adults are important resource subsidies for terrestrial ecosystems. Traits related to their development and dispersal should determine their availability to terrestrial consumers. Here, we synthesize geospatial, aquatic biomonitoring and biological traits data to quantify the relative importance of several environmental gradients on the potential spatial and temporal characteristics of aquatic insect subsidies across the contiguous United States. We found the trait composition of benthic macroinvertebrate communities varies among hydrologic regions and could affect how aquatic insects transport subsidies as adults. Further, several trait–environment relationships were underpinned by hydrology. Large bodied taxa that could disperse further from the stream were associated with hydrologically stable conditions. Alternatively, hydrologically variable conditions were associated with multivoltine taxa that could extend the duration of subsidies with periodic emergence events throughout the year. We also found that anthropogenic impacts decrease the frequency of individuals with adult flight but potentially extend the distance subsidies travel into the terrestrial ecosystem. Collectively, these results suggest that natural and anthropogenic gradients could affect aquatic insect subsidies by changing the trait composition of benthic macroinvertebrate communities. The conceptual framework and trait–environment relationships we present shows promise for understanding broad geographical patterns in linkages between ecosystems.more » « less
-
Abstract Emergent aquatic insects transport aquatic‐derived resources into terrestrial ecosystems but are rarely studied at landscape or regional scales. Here, we investigate how stream network geometry constrains the spatial influence of aquatic insect subsidies in terrestrial ecosystems. We also explore potential factors (i.e., climate, topography, soils, and vegetation) that could produce variation in stream network geometry and thus change the extent of aquatic insect subsidies from one region to another. The stream signature is the percentage of aquatic insect subsidies traveling a given distance into the terrestrial ecosystem, relative to what comes out of the stream. We use this concept to model the spatial extent (area) and distribution (spatial patterning) of aquatic subsidies in terrestrial ecosystems across the contiguous United States. Our findings suggest that at least 8% of the subsidies measured at the aquatic–terrestrial boundary (i.e., the 8% stream signature) are typically transferred throughout the entire watershed and that variation in this spatial extent is largely influenced by the drainage density of the stream network. Moreover, we found stream signatures from individual stream reaches overlap such that the spatial extent of the 8% stream signature often includes inputs from multiple stream reaches. Landscape‐scale stream network characteristics increased the area of overlapping stream signatures more than reach‐scale channel properties. Finally, we found runoff was an important factor influencing stream network geometry suggesting a potential effect of climate on aquatic‐to‐terrestrial linkages that have been understudied.more » « less
-
Abstract Networks of direct and indirect biotic interactions underpin the complex dynamics and stability of ecological systems, yet experimental and theoretical studies often yield conflicting evidence regarding the direction (positive or negative) or magnitude of these interactions. We revisited pioneering data sets collected at the deciduous forested Horonai Stream and conducted ecosystem‐level syntheses to demonstrate that the direction of direct and indirect interactions can change depending on the timescale of observation. Prior experimental studies showed that terrestrial prey that enter the stream from the adjacent forest caused positive indirect effects on aquatic invertebrates during summer by diverting fish consumption. Seasonal and annual estimates of secondary production and organic matter flows along food web pathways demonstrate that this seasonal input of terrestrial invertebrate prey increases production of certain fish species, reversing the indirect effect on aquatic invertebrates from positive at the seasonal timescale to negative at the annual timescale. Even though terrestrial invertebrate prey contributed 54% of the annual organic matter flux to fishes, primarily during summer, fish still consumed 98% of the aquatic invertebrate annual production, leading to top‐down control that is not revealed in short‐term experiments and demonstrating that aquatic prey may be a limiting resource for fishes. Changes in the direction or magnitude of interactions may be a key factor creating nonlinear or stabilizing feedbacks in complex systems, and these dynamics can be revealed by merging experimental and comparative approaches at different scales.more » « less
-
Abstract Over the past several decades, we have increased our understanding of the influences of plant genetics on associated communities and ecosystem functions. These influences have been shown at both broad spatial scales and across many plant families, creating an active subdiscipline of ecology research focused on genes‐to‐ecosystems connections. One complex aspect of plant genetics is the distinction between males and females in dioecious plants. The genetic determinants of plant sex are poorly understood for most plants, but the influences of plant sex on morphological, physiological, and chemical plant traits are well‐studied. We argue that these plant traits, controlled by plant sex, may have wide‐reaching influences on both terrestrial and aquatic communities and ecosystem processes, particularly for riparian plants. Here we systematically review the influences of plant sex on plant traits, influences of plant traits on terrestrial community members, and how interactions between plant traits and terrestrial community members can influence terrestrial ecosystem functions in riparian forests. We then extend these influences into adjacent aquatic ecosystem functions and aquatic communities to explore how plant sex might influence linked terrestrial‐aquatic systems as well as the physical structure of riparian systems. This review highlights data gaps in empirical studies exploring the direct influences of plant sex on communities and ecosystems but draws inference from community and ecosystem genetics. Overall, this review highlights how variation by plant sex has implications for climate change adaptations in riparian habitats, the evolution and range shifts of riparian species and the methods used for conserving and restoring riparian systems.more » « less
An official website of the United States government
